• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            asm, c, c++ are my all
            -- Core In Computer
            posts - 139,  comments - 123,  trackbacks - 0

            /********************************************\
            |????歡迎轉載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
            \********************************************/


            C++對象模型(6) -? Program Transformation Semantics

            作者: Jerry Cat
            時間: 2006/05/11
            鏈接:?
            http://www.shnenglu.com/jerysun0818/archive/2006/05/11/6912.html

            2.3 Program Transformation Semantics
            =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
            1). Explicit Initialization:

            Given the definition
            X x0;
            the following three definitions each explicitly initialize its class object with x0:

            void foo_bar() {
            ?? X x1( x0 );
            ?? X x2 = x0;
            ?? X x3 = x( x0 );
            ?? // ...
            }
            The required program transformation is two-fold:

            Each definition is rewritten with the initialization stripped out.
            An invocation of the class copy constructor is inserted.
            For example, foo_bar() might look as follows after this straightforward, two-fold transformation:

            // Possible program transformation Pseudo C++ Code
            void foo_bar() {
            ?? X x1;
            ?? X x2;
            ?? X x3;

            ?? // compiler inserted invocations of copy constructor for X
            ?? x1.X::X( x0 );
            ?? x2.X::X( x0 );
            ?? x3.X::X( x0 );
            ?? // ...
            }
            where the call

            x1.X::X( x0 );
            represents a call of the copy constructor

            X::X( const X& xx );

            2). Argument Initialization盡量不用傳值法, 要穿指針或引用. 傳值法開銷大效率低,
            ??? 更要命的是涉及到深淺拷貝以及, 局部變量和臨時對象的銷毀問題.

            3). Return Value Initialization(雙重變形, Bjarne Stroutstrup的trick):
            (按: 返回值(不是引用或指針,返回的是value), 其實是讓一外部對象的引用做一個"悄然追加"
            ???? 的參數(編譯器偷著干的, 你是看不見的:), 然后是空返回, 你的返回值呢? 諾, 就是那
            ???? 以"外追"方式進入函數內部參與處理的引用呵^_^ )

            Given the following definition of bar():
            X bar()
            {
            ?? X xx;
            ?? // process xx ...
            ?? return xx;
            }
            you may ask how might bar()'s return value be copy constructed from its local object xx?
            Stroustrup's solution in cfront is a two-fold transformation:

            Add an additional argument of type reference to the class object. This argument will hold the
            copy constructed "return value."

            Insert an invocation of the copy constructor prior to the return statement to initialize the
            added argument with the value of the object being returned.

            What about the actual return value, then? A final transformation rewrites the function to have
            it not return a value. The transformation of bar(), following this algorithm, looks like this:

            // function transformation to reflect application of copy constructor Pseudo C++ Code
            void bar( X& __result )
            {
            ?? X xx;

            ?? // compiler generated invocation of default constructor
            ?? xx.X::X();
            ?? // ... process xx

            ?? // compiler generated invocation of copy constructor
            ?? __result.X::X( xx );

            ?? return;
            }
            Given this transformation of bar(), the compiler is now required to transform each invocation
            of bar() to reflect its new definition. For example,

            X xx = bar();
            is transformed into the following two statements:

            // note: no default constructor applied
            X xx;
            bar( xx );
            while an invocation such as

            bar().memfunc();
            might be transformed into

            // compiler generated temporary
            X __temp0;
            ( bar( __temp0 ), __temp0 ).memfunc();
            Similarly, if the program were to declare a pointer to a function, such as

            X ( *pf )();
            pf = bar;
            that declaration, too, would need to be transformed:

            void ( *pf )( X& );
            pf = bar;

            4). Optimization at the Compiler Level:
            In a function such as bar(), where all return statements return the same named value, it is
            possible for the compiler itself to optimize the function by substituting the result argument
            for the named return value. For example, given the original definition of bar():

            X bar()
            {
            ?? X xx;
            ?? // ... process xx
            ?? return xx;
            }
            __result is substituted for xx by the compiler:

            void
            bar( X &__result )
            {
            ?? // default constructor invocation Pseudo C++ Code
            ?? __result.X::X();
            ?? // ... process in __result directly

            ?? return;
            }
            This compiler optimization, sometimes referred to as the Named Return Value (NRV) optimization.

            Although the following three initializations are semantically equivalent:

            X xx0( 1024 );
            X xx1 = X( 1024 );
            X xx2 = ( X ) 1024;
            in the second and third instances, the syntax explicitly provides for a two-step initialization:
            Initialize a temporary object with 1024.

            Copy construct the explicit object with the temporary object.

            That is, whereas xx0 is initialized by a single constructor invocation

            // Pseudo C++ Code
            xx0.X::X( 1024 );
            a strict implementation of either xx1 or xx2 results in two constructor invocations, a temporary
            object, and a call to the destructor of class X on that temporary object:

            // Pseudo C++ Code
            X __temp0;
            __temp0.X::X( 1024 );
            xx1.X::X( __temp0 );
            __temp0.X::~X();

            5). The Copy Constructor: To Have or To Have Not?
            ??? =============================================
            Given the following straightforward 3D point class:

            class Point3d {
            public:
            ?? Point3d( float x, float y, float z );
            ?? // ...
            private:
            ?? float _x, _y, _z;
            };
            should the class designer provide an explicit copy constructor?

            The default copy constructor is considered trivial. There are no member or base class objects
            with a copy constructor that need to be invoked. Nor is there a virtual base class or virtual
            function associated with the class. So, by default, a memberwise initialization of one Point3d
            class object with another results in a bitwise copy. This is efficient. But is it safe?

            The answer is yes. The three coordinate members are stored by value. Bitwise copy results in
            neither a memory leak nor address aliasing. Thus it is both safe and efficient.

            So, how would you answer the question, should the class designer provide an explicit copy
            constructor? The obvious answer, of course, is no. There is no reason to provide an instance
            of the copy constructor, as the compiler automatically does the best job for you. The more subtle
            answer is to ask whether you envision the class's requiring a good deal of memberwise
            initialization, in particular, returning objects by value? If the answer is yes, then it makes
            excellent sense to provide an explicit inline instance of the copy constructor that is, provided
            your compiler provides the NRV optimization(虛擬語氣).

            For example, the Point3d class supports the following set of functions:

            Point3d operator+( const Point3d&, const Point3d& );
            Point3d operator-( const Point3d&, const Point3d& );
            Point3d operator*( const Point3d&, int );
            etc.
            all of which fit nicely into the NRV template
            {
            ?? Point3d result;
            ?? // compute result
            ?? return result
            }
            The simplest method of implementing the copy constructor is as follows:

            Point3d::Point3d( const Point3d &rhs )
            {
            ?? _x = rhs._x;
            ?? _y = rhs._y;
            ?? _z = rhs._z;
            };
            This is okay, but use of the C library memcpy() function would be more efficient:

            Point3d::Point3d( const Point3d &rhs )
            {
            ?? memcpy( this, &rhs, sizeof( Point3d );
            };
            Use of both memcpy() and memset(), however, works only if the classes do not contain any
            compiler-generated internal members. If the Point3d class declares one or more virtual functions
            or contains a virtual base class, use of either of these functions will result in overwriting the
            values the compiler set for these members. For example, given the following declaration:

            class Shape {
            public:
            ?? // oops: this will overwrite internal vptr!
            ?? Shape() { memset( this, 0, sizeof( Shape ));
            ?? virtual ~Shape();
            ?? // ...
            };
            the compiler augmentation for the constructor generally looks like this:

            // Expansion of constructor Pseudo C++ Code
            Shape::Shape()
            {
            ?? // vptr must be set before user code executes
            ?? __vptr__Shape = __vtbl__Shape;

            ?? // oops: memset zeros out value of vptr
            ?? memset( this, 0, sizeof( Shape ));
            };
            As you can see, correct use of the memset() and memcpy() functions requires some knowledge of the
            C++ Object Model semantics! 嘿, 把C庫扯進來了, 強! C庫中許多強調性能,效率的函數是用匯編寫的

            Summary: 編譯器盡可能地"優化掉"拷貝構造函數, 代之以NRV...
            ---------------------------------------------------------
            Application of the copy constructor requires the compiler to more or less transform portions of
            your program. In particular, consider a function that returns a class object by value for a class
            in which a copy constructor is either explicitly defined or synthesized. The result is profound
            program transformations both in the definition and use of the function. Also, the compiler
            optimizes away the copy constructor invocation where possible, replacing the NRV with an additional
            first argument within which the value is stored directly. Programmers who understand these
            transformations and the likely conditions for copy constructor optimization can better control the
            runtime performance of their programs.

            posted on 2006-05-11 03:33 Jerry Cat 閱讀(585) 評論(0)  編輯 收藏 引用

            <2006年11月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            常用鏈接

            留言簿(7)

            隨筆檔案

            最新隨筆

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            婷婷久久五月天| 国产精自产拍久久久久久蜜| 久久国产精品成人免费| 精品久久久久久无码中文字幕一区| 一本一本久久A久久综合精品 | 久久精品嫩草影院| 大美女久久久久久j久久| 亚洲精品成人久久久| 久久精品无码一区二区无码| 伊人色综合久久| 亚洲伊人久久精品影院| 热99re久久国超精品首页| 狠狠色综合网站久久久久久久高清| 日本欧美久久久久免费播放网| 久久亚洲国产成人影院网站| 狠狠色婷婷久久综合频道日韩| 91视频国产91久久久| 国产成人精品综合久久久| 久久777国产线看观看精品| 久久大香萑太香蕉av| 久久人人爽人人澡人人高潮AV| 久久亚洲精品国产精品| 婷婷久久综合九色综合九七| 国产精品热久久无码av| 亚洲AV无码久久寂寞少妇| 久久天天躁夜夜躁狠狠| 久久综合伊人77777| 国产精品99久久免费观看| 亚洲精品国产美女久久久| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 欧美精品丝袜久久久中文字幕 | 国产亚洲美女精品久久久2020| 国产福利电影一区二区三区久久久久成人精品综合 | 久久伊人精品一区二区三区| 久久久久无码专区亚洲av| 久久无码一区二区三区少妇| 国产精品久久久久jk制服| 久久99国产综合精品| 国产欧美久久一区二区| 久久99久久99精品免视看动漫| 欧美黑人又粗又大久久久|