??xml version="1.0" encoding="utf-8" standalone="yes"?>国产99久久精品一区二区,91亚洲国产成人久久精品,久久久久久久久久久精品尤物http://www.shnenglu.com/guodongshan/category/15091.htmlzh-cnTue, 12 Oct 2010 16:34:02 GMTTue, 12 Oct 2010 16:34:02 GMT60计算几何题目ȝ及分c?/title><link>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129624.html</link><dc:creator>孟v</dc:creator><author>孟v</author><pubDate>Tue, 12 Oct 2010 09:36:00 GMT</pubDate><guid>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129624.html</guid><wfw:comment>http://www.shnenglu.com/guodongshan/comments/129624.html</wfw:comment><comments>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129624.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/guodongshan/comments/commentRss/129624.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/guodongshan/services/trackbacks/129624.html</trackback:ping><description><![CDATA[     摘要: FOJ Hotter Colder http://acm.fzu.edu.cn/problem.php?pid=1014 求线D늚中位U,U段怺求交点,求凸多边形的面积Q?无归之室 http://acm.fzu.edu.cn/problem.php?pid=1016 本题_ֺ要求非常高,用三角函数的话,很容易就wa.. Reflections http://acm.fzu.e...  <a href='http://www.shnenglu.com/guodongshan/archive/2010/10/12/129624.html'>阅读全文</a><img src ="http://www.shnenglu.com/guodongshan/aggbug/129624.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/guodongshan/" target="_blank">孟v</a> 2010-10-12 17:36 <a href="http://www.shnenglu.com/guodongshan/archive/2010/10/12/129624.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>L四面体体U公?以及几点计算几何注意事项http://www.shnenglu.com/guodongshan/archive/2010/10/12/129595.html孟v孟vTue, 12 Oct 2010 04:00:00 GMThttp://www.shnenglu.com/guodongshan/archive/2010/10/12/129595.htmlhttp://www.shnenglu.com/guodongshan/comments/129595.htmlhttp://www.shnenglu.com/guodongshan/archive/2010/10/12/129595.html#Feedback0http://www.shnenglu.com/guodongshan/comments/commentRss/129595.htmlhttp://www.shnenglu.com/guodongshan/services/trackbacks/129595.htmlEuler的Q意四面体体积公式Q已知边长求体积Q?br>



已知4点坐标求体积Q?/span>其中四个点的坐标分别为(x1,y1,z1Q?span lang=EN-US>,Q?span lang=EN-US>x2,y2,z2
Q?span lang=EN-US>,Q?span lang=EN-US>x3,y3,z3Q?span lang=EN-US>,Q?span lang=EN-US>x4,y4,z4Q?br>


注意事项Q?br>

1. 注意舍入方式(0.5的舍入方?span lang=EN-US>);防止输出-0.

2. 几何题注意多试不对U数?span lang=EN-US>.

3. 整数几何注意xmult?span lang=EN-US>dmult是否会出?span lang=EN-US>;

   W点几何注意eps的?span lang=EN-US>.

4. 避免使用斜率;注意除数是否会ؓ0.

5. 公式一定要化简后再代入.

6. 判断同一?span lang=EN-US>2*PI域内两角度差应该?span lang=EN-US>

   abs(a1-a2)<beta||abs(a1-a2)>pi+pi-beta;

   相等应该?/span>

   abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps;

7. 需要的话尽量?/span>atan2,注意:atan2(0,0)=0,

   atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi.

8. cross product = |u|*|v|*sin(a)

   dot product = |u|*|v|*cos(a)

9. (P1-P0)x(P2-P0)l果的意?span lang=EN-US>:

   ?span lang=EN-US>: <P0,P1>?span lang=EN-US><P0,P2>时?span lang=EN-US>(0,pi)?span lang=EN-US>

   ?span lang=EN-US>: <P0,P1>?span lang=EN-US><P0,P2>逆时?span lang=EN-US>(0,pi)?span lang=EN-US>

   0 : <P0,P1>,<P0,P2>q,夹角?span lang=EN-US>0?span lang=EN-US>pi



孟v 2010-10-12 12:00 发表评论
]]>
读陈峰的《计几何算法概览?/title><link>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129568.html</link><dc:creator>孟v</dc:creator><author>孟v</author><pubDate>Tue, 12 Oct 2010 02:18:00 GMT</pubDate><guid>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129568.html</guid><wfw:comment>http://www.shnenglu.com/guodongshan/comments/129568.html</wfw:comment><comments>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129568.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/guodongshan/comments/commentRss/129568.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/guodongshan/services/trackbacks/129568.html</trackback:ping><description><![CDATA[原文链接Q?a target=_blank>http://cschf.spaces.live.com/blog/cns!E113B8D05D833E2B!140.entry</a><br>写几点不熟悉?br>12. 判断Ҏ否在多边形中<br>13. 判断U段是否在多边Ş?br>25. 计算U段或直U与U段的交?br>27. 求线D|直线与圆的交?br><br><a><strong>判断Ҏ否在多边形中</strong></a><strong>Q?/strong> <p style="FONT-SIZE: 12pt">判断点P是否在多边Ş中是计算几何中一个非常基本但是十分重要的法。以点P为端点,向左方作线LQ由于多边Ş是有界的Q所以射UL的左端一定在多边形外Q考虑沿着L从无I处开始自左向右移动,遇到和多边Ş的第一个交点的时候,q入C多边形的内部Q遇到第二个交点的时候,d了多边ŞQ?#8230;…所以很Ҏ看出当L和多边Ş的交Ҏ目C是奇数的时候,P在多边Ş内,是偶数的话P在多边Ş外?/p> <p>但是有些Ҏ情况要加以考虑。如图下?a)(b)(c)(d)所C。在?a)中,L和多边Ş的顶点相交,q时候交点只能计一个;在图(b)中,L和多边Ş点的交点不应被计算Q在?c)?d) 中,L和多边Ş的一条边重合Q这条边应该被忽略不计。如果L和多边Ş的一条边重合Q这条边应该被忽略不计?/p> <p><img style="WIDTH: 300px; HEIGHT: 600px" src="http://i3.6.cn/cvbnm/f2/cc/f0/81fb54609cf280e08ad583de8a667e02.jpg" width=300 height=600> </p> <p>Zl一赯Q我们在计算线L和多边Ş的交点的时候,1。对于多边Ş的水q不作考虑Q?。对于多边Ş的顶点和L怺的情况,如果该顶Ҏ其所属的边上U坐标较大的点Q则计数Q否则忽略;3。对于P在多边Ş边上的情形,直接可判断P属于多边行。由此得出算法的伪代码如下: <br>    count ← 0; <br>    以P为端点,作从叛_左的线L;  <br>    for 多边形的每条边s <br>     do if P在边s?nbsp; <br>          then return true; <br>        if s不是水^?<br>          then if s的一个端点在L?<br>                 if 该端Ҏs两端点中U坐标较大的端点 <br>                   then count ← count+1 <br>               else if s和L怺 <br>                 then count ← count+1; <br>    if count mod 2 = 1  <br>      then return true; <br>    else return false; <br>其中做射UL的方法是Q设P'的纵坐标和P相同Q横坐标为正无穷大(很大的一个正敎ͼQ则P和P'q定了线L?</p> <p>判断Ҏ否在多边形中的这个算法的旉复杂度ؓO(n)?/p> <p>另外q有一U算法是用带W号的三角Ş面积之和与多边Ş面积q行比较Q这U算法由于用QҎq算所以会带来一定误差,不推荐大家用?</p> <p><a><br><strong>判断U段是否在多边Ş?/strong></a><strong>Q?/strong></p> <p>U段在多边Ş内的一个必要条件是U段的两个端炚w在多边Ş内,但由于多边Ş可能为凹Q所以这不能成ؓ判断的充分条件。如果线D和多边形的某条边内交(两线D内交是指两U段怺且交点不在两U段的端点)Q因为多边Ş的边的左右两侧分属多边Ş内外不同部分Q所以线D一定会有一部分在多边Ş?见图a)。于是我们得到线D在多边形内的第二个必要条gQ线D和多边形的所有边都不内交?</p> <p>U段和多边Ş交于U段的两端点q不会媄响线D|否在多边形内Q但是如果多边Ş的某个顶点和U段怺Q还必须判断两相M点之间的U段是否包含于多边Ş内部Q反例见图b)?</p> <p> <img src="http://i3.6.cn/cvbnm/a4/50/b0/79afe28e6ea3a00c4678214bc2083c4b.jpg"> </p> <p>因此我们可以先求出所有和U段怺的多边Ş的顶点,然后按照X-Y坐标排序(X坐标的排在前面Q对于X坐标相同的点QY坐标的排在前面Q这U排序准则也是ؓ了保证水q_垂直情况的判断正?Q这Lȝ两个点就是在U段上相ȝ两交点,如果L盔R两点的中点也在多边Ş内,则该U段一定在多边形内?</p> <p>证明如下Q?/p> <p>命题1Q?<br>如果U段和多边Ş的两盔R交点P1 QP2的中点P' 也在多边形内Q则P1, P2之间的所有点都在多边形内?/p> <p>证明Q?<br>假设P1,P2之间含有不在多边形内的点Q不妨设该点为QQ在P1, P'之间Q因为多边Ş是闭合曲U,所以其内外部之间有界,而P1属于多边行内部,Q属于多边性外部,P'属于多边性内部,P1-Q-P'完全q箋Q所以P1Q和QP'一定跨多边Ş的边界,因此在P1,P'之间臛_q有两个该线D和多边形的交点Q这和P1P2是相M交点矛盾Q故命题成立。证毕?</p> <p>由命?直接可得出推论: <br>推论2Q?<br>讑֤边Ş和线DPQ的交点依ơؓP1,P2,……PnQ其中Pi和Pi+1是相M交点Q线DPQ在多边Ş内的充要条g是:PQQ在多边Ş内且对于i =1, 2,……, n-1QPi ,Pi+1的中点也在多边Ş内?<br>在实际编E中Q没有必要计所有的交点Q首先应判断U段和多边Ş的边是否内交Q倘若U段和多边Ş的某条边内交则线D一定在多边形外Q如果线D和多边形的每一条边都不内交Q则U段和多边Ş的交点一定是U段的端Ҏ者多边Ş的顶点,只要判断Ҏ否在U段上就可以了?<br>x我们得出法如下Q?<br>    if U端PQ的端点不都在多边形内  <br>      then return false; <br>    炚wpointSet初始化ؓI? <br>    for 多边形的每条边s <br>      do if U段的某个端点在s?<br>           then 该端点加入pointSet; <br>         else if s的某个端点在U段PQ?<br>           then 该端点加入pointSet; <br>         else if s和线DPQ怺 // q时候已l可以肯定是内交?<br>           then return false; <br>    pointSet中的Ҏ照X-Y坐标排序; <br>    for pointSet中每两个盔R?pointSet[i] , pointSet[ i+1] <br>      do if pointSet[i] , pointSet[ i+1] 的中点不在多边Ş?<br>           then return false; <br>    return true; <br>q个q程中的排序因ؓ交点数目肯定q小于多边Ş的顶Ҏ目nQ所以最多是常数U的复杂度,几乎可以忽略不计。因此算法的旉复杂度也是O(n)?/p> <br> <p><strong><a><font style="COLOR: #000000" color=#0066a7>计算U段或直U与U段的交?/font></a>:</strong></p> <p>设一条线DؓL0 = P1P2Q另一条线D|直线为L1 = Q1Q2 Q要计算的就是L0和L1的交炏V?<br>1Q?首先判断L0和L1是否怺Q方法已在前文讨Q,如果不相交则没有交点Q否则说明L0和L1一定有交点Q下面就L0和L1都看作直U来考虑?</p> <p>2Q?如果P1和P2横坐标相同,即L0q于Y?</p> <p>a) 若L1也^行于Y_ </p> <p>i. 若P1的纵坐标和Q1的纵坐标相同Q说明L0和L1qQ假如L1是直U的话他们有无穷的交点,假如L1是线D늚话可?计算两条qU段的交?的算法求他们的交点(该方法在前文已讨Q; <br>ii. 否则说明L0和L1qQ他们没有交点; </p> <p>b) 若L1不^行于Y_则交Ҏ坐标为P1的横坐标Q代入到L1的直U方E中可以计算Z点纵坐标Q?</p> <p>3Q?如果P1和P2横坐标不同,但是Q1和Q2横坐标相同,即L1q于Y_则交Ҏ坐标为Q1的横坐标Q代入到L0的直U方E中可以计算Z点纵坐标Q?</p> <p>4Q?如果P1和P2U坐标相同,即L0q于X?</p> <p>a) 若L1也^行于X_ </p> <p>i. 若P1的横坐标和Q1的横坐标相同Q说明L0和L1qQ假如L1是直U的话他们有无穷的交点,假如L1是线D늚话可?计算两条qU段的交?的算法求他们的交点(该方法在前文已讨Q; <br>ii. 否则说明L0和L1qQ他们没有交点; </p> <p>b) 若L1不^行于X_则交点纵坐标为P1的纵坐标Q代入到L1的直U方E中可以计算ZҎ坐标Q?</p> <p>5Q?如果P1和P2U坐标不同,但是Q1和Q2U坐标相同,即L1q于X_则交点纵坐标为Q1的纵坐标Q代入到L0的直U方E中可以计算ZҎ坐标Q?</p> <p>6Q?剩下的情况就是L1和L0的斜率均存在且不?的情?</p> <p>a) 计算出L0的斜率K0QL1的斜率K1 Q?</p> <p>b) 如果K1 = K2  </p> <p>i. 如果Q1在L0上,则说明L0和L1qQ假如L1是直U的话有无穷交点Q假如L1是线D늚话可?计算两条qU段的交?的算法求他们的交点(该方法在前文已讨Q; <br>ii. 如果Q1不在L0上,则说明L0和L1qQ他们没有交炏V?<br>c) 联立两直U的方程l可以解ZҎ <br>q个法q不复杂Q但是要分情况讨论清楚,其是当两条U段q的情况需要单独考虑Q所以在前文求两条qU段的算法单独写出来。另外,一开始就先利用矢量叉乘判断线D与U段Q或直线Q是否相交,如果l果是相交,那么在后面就可以线D全部看作直U来考虑。需要注意的是,我们可以直U或U段方程改写为ax+by+c=0的Ş式,q样一来上q过E的部分步骤可以合ƈQ羃短了代码长度Q但是由于先要求出参敎ͼq种法花Ҏ多的旉?<br></p> <p><strong><a><font style="COLOR: #000000" color=#0066a7>求线D|直线与圆的交?/font></a>:</strong></p> <p>讑֜心ؓOQ圆半径为rQ直U(或线D)L上的两点为P1,P2?</p> <p>1. 如果L是线D且P1QP2都包含在圆O内,则没有交点;否则q行下一步?</p> <p>2. 如果Lq于Y_ </p> <p>a) 计算圆心到L的距disQ?<br>b) 如果dis > r 则L和圆没有交点Q?<br>c) 利用勾股定理Q可以求Z交点坐标Q但要注意考虑L和圆的相切情c?<br>3. 如果Lq于X_做法与Lq于Y轴的情况cMQ?</p> <p>4. 如果L既不qX轴也不^行Y_可以求出L的斜率KQ然后列出L的点斜式方程Q和圆方E联立即可求解出L和圆的两个交点; </p> <p>5. 如果L是线D,对于2Q?Q?中求出的交点q要分别判断是否属于该线D늚范围内?/p> <img src ="http://www.shnenglu.com/guodongshan/aggbug/129568.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/guodongshan/" target="_blank">孟v</a> 2010-10-12 10:18 <a href="http://www.shnenglu.com/guodongshan/archive/2010/10/12/129568.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>二维下计几何分c?/title><link>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129563.html</link><dc:creator>孟v</dc:creator><author>孟v</author><pubDate>Tue, 12 Oct 2010 01:52:00 GMT</pubDate><guid>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129563.html</guid><wfw:comment>http://www.shnenglu.com/guodongshan/comments/129563.html</wfw:comment><comments>http://www.shnenglu.com/guodongshan/archive/2010/10/12/129563.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/guodongshan/comments/commentRss/129563.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/guodongshan/services/trackbacks/129563.html</trackback:ping><description><![CDATA[<p style="FONT-SIZE: 12pt">一、点的基本运?<br>1. q面上两点之间距?1 <br>2. 判断两点是否重合 1 <br>3. 矢量叉乘 1 <br>4. 矢量点乘 2 <br>5. 判断Ҏ否在U段?2 <br>6. 求一炚w某点旋{后的坐标 2 <br>7. 求矢量夹?2 <br></p> <p style="FONT-SIZE: 12pt">二?nbsp;U段及直U的基本q算 <br>1. 点与U段的关p?3 <br>2. 求点到线D|在直U垂U的垂 4 <br>3. 点到U段的最q点 4 <br>4. 点到U段所在直U的距离 4 <br>5. 点到折线集的最q距?4 <br>6. 判断圆是否在多边形内 5 <br>7. 求矢量夹角余?5 <br>8. 求线D之间的夹角 5 <br>9. 判断U段是否怺 6 <br>10.判断U段是否怺但不交在端点处(内交Q?6 <br>11.求线D|在直U的方程 6 <br>12.求直U的斜率 7 <br>13.求直U的倾斜?7 <br>14.求点关于某直U的对称?7 <br>15.判断两条直线是否怺及求直线交点 7 <br>16.判断U段是否怺Q如果相交返回交?7 <br><br><span style="FONT-SIZE: 12pt">三、多边Ş常用法模块 <br>1. 判断多边形是否简单多边Ş 8 <br>2. 查多边Ş点的凸Ҏ?9 <br>3. 判断多边形是否凸多边?9 <br>4. 求多边Ş面积 9 <br>5. 判断多边形顶点的排列方向Q方法一 10 <br>6. 判断多边形顶点的排列方向Q方法二 10 <br>7. 线法判断点是否在多边Ş?10 <br>8. 判断Ҏ否在凸多边Ş?11 <br>9. L炚w的graham法 12 <br>10.L炚w凸包的卷包裹?13 <br>11.判断U段是否在多边Ş?14 <br>12.求简单多边Ş的重?QHDU1115Q?5 <br>13.求凸多边形的重心 17 <br>14.求肯定在l定多边形内的一个点 17 <br>15.求从多边形外一点出发到该多边Ş的切U?18 <br>16.判断多边形的核是否存?19 <br><br>四?圆的基本q算 <br>1 .Ҏ否在圆内 20 <br>2 .求不q的三Ҏ定的圆 21 <br><br>五、矩形的基本q算 <br>1.已知矩Ş三点坐标Q求W?点坐?22 <br><br>六、常用算法的描述 22 <br><br>七、补?<br>1Q两圆关p: 24 <br>2Q判断圆是否在矩形内Q?24 <br>3Q点到^面的距离Q?25 <br>4Q点是否在直U同侧: 25 <br>5Q镜面反线Q?25 <br>6Q矩形包含: 26 <br>7Q两圆交点: 27 <br>8Q两圆公共面U: 28 <br>9. 圆和直线关系Q?29 <br>10. 内切圆: 30 <br>11. 求切点: 31 <br>12. U段的左xQ?31 <br>13Q公式: 32 <br><br>附上一博客:</span><a target=_blank><span style="FONT-SIZE: 12pt">计算几何法概览</span></a><span style="FONT-SIZE: 12pt"> <br><br>  </p> <p align=left><a ></a><span>zoj</span><span>上的计算几何?/span><span><br>Vol I <br>1010 by pandahyx <br>1032 by javaman <br>1037 by Vegetable Bird <br>1041 by javaman <br>1081 by Vegetable Bird <br>1090 by Vegetable Bird <br><br>Vol II <br>1104 by javaman <br>1123 by javaman <br>1139 by Vegetable Bird <br>1165 by javaman <br>1199 by Vegetable Bird <br><br>Vol V <br>1426 by Vegetable Bird <br>1439 by Vegetable Bird <br>1460 by Vegetable Bird <br>1472 by Vegetable Bird <br><br>Vol VI <br>1597 by Vegetable Bird <br><br>Vol VII <br>1608 by Vegetable Bird <br>1648 by Vegetable Bird <br><br>Vol XII <br>2102 by pandahyx <br>2107 by pandahyx <br>2157 by pandahyx <br><br>Vol XIII <br>2234 by pandahyx <br><br>Vol XIV <br>2318 by ahyangyi <br>2394 by qherlyt <br><br>Vol XV <br>2403 by Vegetable Bird </span></span></p> <img src ="http://www.shnenglu.com/guodongshan/aggbug/129563.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/guodongshan/" target="_blank">孟v</a> 2010-10-12 09:52 <a href="http://www.shnenglu.com/guodongshan/archive/2010/10/12/129563.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>判断Ҏ否在三角形内http://www.shnenglu.com/guodongshan/archive/2010/10/12/129558.html孟v孟vTue, 12 Oct 2010 01:40:00 GMThttp://www.shnenglu.com/guodongshan/archive/2010/10/12/129558.htmlhttp://www.shnenglu.com/guodongshan/comments/129558.htmlhttp://www.shnenglu.com/guodongshan/archive/2010/10/12/129558.html#Feedback0http://www.shnenglu.com/guodongshan/comments/commentRss/129558.htmlhttp://www.shnenglu.com/guodongshan/services/trackbacks/129558.html        ׃个顶点向所求的点引出矢量(注意方向Q,然后L用其中两个矢量Ş成^面,再用q个q面和剩下的矢量叉乘Q得Z个新矢量Q方向向里,则在三角形外Q反之在里面?
2.用面U方?br>
#include<stdio.h>
#include
<math.h>
struct TPoint {
    
float x;
    
float y;
}
;

//求叉U?/span>
float mul(struct TPoint p1, struct TPoint p2, struct TPoint p0) {
    
return ((p1.x - p0.x)*(p2.y - p0.y)-(p2.x - p0.x)*(p1.y - p0.y));
}

/*׃个顶点向所求的点引出矢量(注意方向Q,然后L用其中两个矢量Ş成^面,
 * 再用q个q面和剩下的矢量叉乘Q得Z个新矢量Q方向向里,则在三角形外Q反之在里面?br> 
*/

int inside(struct TPoint tr[], struct TPoint p) {
    
int i;
    
for (i = 0; i < 3; i++)
        
if (mul(p, tr[i], tr[(i + 1% 3]) * mul(p, tr[(i + 2% 3], tr[(i + 1% 3]) > 0)
            
return 0;
    
return 1;
}


float area(struct TPoint p1, struct TPoint p2, struct TPoint p3) {
    
return fabs((p1.x - p3.x)*(p2.y - p3.y)-(p2.x - p3.x)*(p1.y - p3.y));
}

//用面U判断p是否在三角Ş?/span>
int inside2(struct TPoint tr[], struct TPoint p) {
    
if (fabs(area(tr[0], tr[1], tr[2]) -
            area(p, tr[
1], tr[2]) -
            area(tr[
0], p, tr[2]) -
            area(tr[
0], tr[1], p)) < 1.0e-20)
        
return 1;
    
else
        
return 0;
}


int main() {
    
struct TPoint tr[3= {{-11},{10},{30}},  p = {12};

    
//Ҏ一
    printf("algorithm   1:");
    
if (inside(tr, p))
        printf(
"In\n");
    
else
        printf(
"Out\n");

    
//Ҏ一
    printf("algorithm   2:");
    
if (inside2(tr, p))
        printf(
"In\n");
    
else
        printf(
"Out\n");
}


孟v 2010-10-12 09:40 发表评论
]]>
ZOJ3414 Trail Walk 单计几?/title><link>http://www.shnenglu.com/guodongshan/archive/2010/10/07/128942.html</link><dc:creator>孟v</dc:creator><author>孟v</author><pubDate>Thu, 07 Oct 2010 10:25:00 GMT</pubDate><guid>http://www.shnenglu.com/guodongshan/archive/2010/10/07/128942.html</guid><wfw:comment>http://www.shnenglu.com/guodongshan/comments/128942.html</wfw:comment><comments>http://www.shnenglu.com/guodongshan/archive/2010/10/07/128942.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/guodongshan/comments/commentRss/128942.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/guodongshan/services/trackbacks/128942.html</trackback:ping><description><![CDATA[把在n条线D中Q以Q?,0QؓLQ放入m个点Q其等分ؓm+1份?br><a target=_blank>http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3414</a><br> <div style="BORDER-BOTTOM: #cccccc 1px solid; BORDER-LEFT: #cccccc 1px solid; PADDING-BOTTOM: 4px; BACKGROUND-COLOR: #eeeeee; PADDING-LEFT: 4px; WIDTH: 98%; PADDING-RIGHT: 5px; FONT-SIZE: 13px; WORD-BREAK: break-all; BORDER-TOP: #cccccc 1px solid; BORDER-RIGHT: #cccccc 1px solid; PADDING-TOP: 4px"><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/None.gif"><span style="COLOR: #000000">#include</span><span style="COLOR: #000000"><</span><span style="COLOR: #000000">stdio.h</span><span style="COLOR: #000000">></span><span style="COLOR: #000000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/None.gif">#include</span><span style="COLOR: #000000"><</span><span style="COLOR: #000000">math.h</span><span style="COLOR: #000000">></span><span style="COLOR: #000000"><br><img id=Codehighlighter1_47_69_Open_Image onclick="this.style.display='none'; Codehighlighter1_47_69_Open_Text.style.display='none'; Codehighlighter1_47_69_Closed_Image.style.display='inline'; Codehighlighter1_47_69_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_47_69_Closed_Image onclick="this.style.display='none'; Codehighlighter1_47_69_Closed_Text.style.display='none'; Codehighlighter1_47_69_Open_Image.style.display='inline'; Codehighlighter1_47_69_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedBlock.gif"></span><span style="COLOR: #0000ff">struct</span><span style="COLOR: #000000"> point</span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_47_69_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_47_69_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">    </span><span style="COLOR: #0000ff">double</span><span style="COLOR: #000000"> x,y,len;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedBlockEnd.gif">}</span></span><span style="COLOR: #000000">p[</span><span style="COLOR: #000000">1002</span><span style="COLOR: #000000">];<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/None.gif"></span><span style="COLOR: #0000ff">int</span><span style="COLOR: #000000"> main()<br><img id=Codehighlighter1_90_1232_Open_Image onclick="this.style.display='none'; Codehighlighter1_90_1232_Open_Text.style.display='none'; Codehighlighter1_90_1232_Closed_Image.style.display='inline'; Codehighlighter1_90_1232_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_90_1232_Closed_Image onclick="this.style.display='none'; Codehighlighter1_90_1232_Closed_Text.style.display='none'; Codehighlighter1_90_1232_Open_Image.style.display='inline'; Codehighlighter1_90_1232_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedBlock.gif"></span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_90_1232_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_90_1232_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">    </span><span style="COLOR: #0000ff">int</span><span style="COLOR: #000000"> n,m,i,j,ca</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">    </span><span style="COLOR: #0000ff">double</span><span style="COLOR: #000000"> ave,len,ax,ay;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">    </span><span style="COLOR: #0000ff">while</span><span style="COLOR: #000000">(scanf(</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">%d%d</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">,</span><span style="COLOR: #000000">&</span><span style="COLOR: #000000">n,</span><span style="COLOR: #000000">&</span><span style="COLOR: #000000">m)</span><span style="COLOR: #000000">!=</span><span style="COLOR: #000000">EOF)<br><img id=Codehighlighter1_180_1216_Open_Image onclick="this.style.display='none'; Codehighlighter1_180_1216_Open_Text.style.display='none'; Codehighlighter1_180_1216_Closed_Image.style.display='inline'; Codehighlighter1_180_1216_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_180_1216_Closed_Image onclick="this.style.display='none'; Codehighlighter1_180_1216_Closed_Text.style.display='none'; Codehighlighter1_180_1216_Open_Image.style.display='inline'; Codehighlighter1_180_1216_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedSubBlock.gif">    </span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_180_1216_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_180_1216_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">        p[</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">].x</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">; p[</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">].y</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">; ave</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">;<br><img id=Codehighlighter1_242_490_Open_Image onclick="this.style.display='none'; Codehighlighter1_242_490_Open_Text.style.display='none'; Codehighlighter1_242_490_Closed_Image.style.display='inline'; Codehighlighter1_242_490_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_242_490_Closed_Image onclick="this.style.display='none'; Codehighlighter1_242_490_Closed_Text.style.display='none'; Codehighlighter1_242_490_Open_Image.style.display='inline'; Codehighlighter1_242_490_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedSubBlock.gif">        </span><span style="COLOR: #0000ff">for</span><span style="COLOR: #000000">(i</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">;i</span><span style="COLOR: #000000"><=</span><span style="COLOR: #000000">n;i</span><span style="COLOR: #000000">++</span><span style="COLOR: #000000">)</span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_242_490_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_242_490_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            scanf(</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">%lf%lf</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">,</span><span style="COLOR: #000000">&</span><span style="COLOR: #000000">p[i].x,</span><span style="COLOR: #000000">&</span><span style="COLOR: #000000">p[i].y);<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            p[i].len</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">sqrt((p[i].x</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[i</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].x)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[i].x</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[i</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].x)</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">(p[i].y</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[i</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].y)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[i].y</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[i</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].y));<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            </span><span style="COLOR: #008000">//</span><span style="COLOR: #008000">printf("%.3f %.3f %.3f\n",p[i].x,p[i].y,p[i].len);</span><span style="COLOR: #008000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif"></span><span style="COLOR: #000000">            ave</span><span style="COLOR: #000000">+=</span><span style="COLOR: #000000">p[i].len;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif">        }</span></span><span style="COLOR: #000000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">        ave</span><span style="COLOR: #000000">/=</span><span style="COLOR: #000000">(m</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">); </span><span style="COLOR: #008000">//</span><span style="COLOR: #008000">每一份的均长</span><span style="COLOR: #008000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif"></span><span style="COLOR: #000000">        j</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">;  </span><span style="COLOR: #008000">//</span><span style="COLOR: #008000">沿着U段?br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">       </span><span style="COLOR: #008000">//</span><span style="COLOR: #008000"> printf("%.3f\n",ave);</span><span style="COLOR: #008000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif"></span><span style="COLOR: #000000">        printf(</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">Route %d\n</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">,ca</span><span style="COLOR: #000000">++</span><span style="COLOR: #000000">);<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">        </span><span style="COLOR: #0000ff">for</span><span style="COLOR: #000000">(i</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">;i</span><span style="COLOR: #000000"><=</span><span style="COLOR: #000000">m;i</span><span style="COLOR: #000000">++</span><span style="COLOR: #000000">)<br><img id=Codehighlighter1_646_1210_Open_Image onclick="this.style.display='none'; Codehighlighter1_646_1210_Open_Text.style.display='none'; Codehighlighter1_646_1210_Closed_Image.style.display='inline'; Codehighlighter1_646_1210_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_646_1210_Closed_Image onclick="this.style.display='none'; Codehighlighter1_646_1210_Closed_Text.style.display='none'; Codehighlighter1_646_1210_Open_Image.style.display='inline'; Codehighlighter1_646_1210_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedSubBlock.gif">        </span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_646_1210_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_646_1210_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            len</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            </span><span style="COLOR: #0000ff">for</span><span style="COLOR: #000000">(; j</span><span style="COLOR: #000000"><</span><span style="COLOR: #000000">n;j</span><span style="COLOR: #000000">++</span><span style="COLOR: #000000">)<br><img id=Codehighlighter1_706_819_Open_Image onclick="this.style.display='none'; Codehighlighter1_706_819_Open_Text.style.display='none'; Codehighlighter1_706_819_Closed_Image.style.display='inline'; Codehighlighter1_706_819_Closed_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="DISPLAY: none" id=Codehighlighter1_706_819_Closed_Image onclick="this.style.display='none'; Codehighlighter1_706_819_Closed_Text.style.display='none'; Codehighlighter1_706_819_Open_Image.style.display='inline'; Codehighlighter1_706_819_Open_Text.style.display='inline';" align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ContractedSubBlock.gif">            </span><span style="BORDER-BOTTOM: #808080 1px solid; BORDER-LEFT: #808080 1px solid; BACKGROUND-COLOR: #ffffff; DISPLAY: none; BORDER-TOP: #808080 1px solid; BORDER-RIGHT: #808080 1px solid" id=Codehighlighter1_706_819_Closed_Text><img src="http://www.shnenglu.com/Images/dot.gif"></span><span id=Codehighlighter1_706_819_Open_Text><span style="COLOR: #000000">{<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">                </span><span style="COLOR: #0000ff">if</span><span style="COLOR: #000000">(len</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].len</span><span style="COLOR: #000000">></span><span style="COLOR: #000000">ave)<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">                    </span><span style="COLOR: #0000ff">break</span><span style="COLOR: #000000">;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">                len</span><span style="COLOR: #000000">+=</span><span style="COLOR: #000000">p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].len;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif">            }</span></span><span style="COLOR: #000000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            </span><span style="COLOR: #0000ff">double</span><span style="COLOR: #000000"> res</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">ave</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">len;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            </span><span style="COLOR: #008000">//</span><span style="COLOR: #008000">printf("%d %.3f\n",j,res);</span><span style="COLOR: #008000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif"></span><span style="COLOR: #000000">            ax</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">p[j].x</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">(res</span><span style="COLOR: #000000">/</span><span style="COLOR: #000000">p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].len)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].x</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].x);<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            ay</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">p[j].y</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">(res</span><span style="COLOR: #000000">/</span><span style="COLOR: #000000">p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].len)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].y</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].y);<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            printf(</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">CP%d: (%.3lf, %.3lf)\n</span><span style="COLOR: #000000">"</span><span style="COLOR: #000000">,i,ax,ay);<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            p[j].x</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">ax; p[j].y</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">ay;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">            p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].len</span><span style="COLOR: #000000">=</span><span style="COLOR: #000000">sqrt((p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].x</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].x)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].x</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].x)</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">(p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].y</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].y)</span><span style="COLOR: #000000">*</span><span style="COLOR: #000000">(p[j</span><span style="COLOR: #000000">+</span><span style="COLOR: #000000">1</span><span style="COLOR: #000000">].y</span><span style="COLOR: #000000">-</span><span style="COLOR: #000000">p[j].y));<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif">        }</span></span><span style="COLOR: #000000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif">    }</span></span><span style="COLOR: #000000"><br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/InBlock.gif">    </span><span style="COLOR: #0000ff">return</span><span style="COLOR: #000000"> </span><span style="COLOR: #000000">0</span><span style="COLOR: #000000">;<br><img align=top src="http://www.shnenglu.com/Images/OutliningIndicators/ExpandedBlockEnd.gif">}</span></span></div> <img src ="http://www.shnenglu.com/guodongshan/aggbug/128942.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/guodongshan/" target="_blank">孟v</a> 2010-10-07 18:25 <a href="http://www.shnenglu.com/guodongshan/archive/2010/10/07/128942.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item></channel></rss> <footer> <div class="friendship-link"> <p>лǵվܻԴȤ</p> <a href="http://www.shnenglu.com/" title="精品视频久久久久">精品视频久久久久</a> <div class="friend-links"> </div> </div> </footer> <a href="http://www.xmxfz.cn" target="_blank">99ƷȾþ޶ </a>| <a href="http://www.ybyibao.cn" target="_blank">þƵ</a>| <a href="http://www.shssdq.cn" target="_blank">þþ뾫ƷպĦ</a>| <a href="http://www.029canon.cn" target="_blank">ݾþþù</a>| <a href="http://www.cn-trip.cn" target="_blank">žžþþƷ</a>| <a href="http://www.sphjw.cn" target="_blank">Ʒ99þþþþè </a>| <a href="http://www.taobaomaiba.cn" target="_blank">ƷþþĻ</a>| <a href="http://www.6kun.cn" target="_blank">99þþƷëƬѲ</a>| <a href="http://www.kongqueyuhn.cn" target="_blank">þþƷa޹v岻</a>| <a href="http://www.jrtz232.cn" target="_blank">޾þһ</a>| <a href="http://www.y7816.cn" target="_blank">޾ƷþþþþҲ</a>| <a href="http://www.yousms.cn" target="_blank">ŷþ18</a>| <a href="http://www.ohos33.cn" target="_blank">vaþþþ</a>| <a href="http://www.68gz.cn" target="_blank">þۺϸϾþúݺݺ97ɫ69</a>| <a href="http://www.jiudexn.cn" target="_blank">þþþ뾫Ʒ</a>| <a href="http://www.gznfrc.com.cn" target="_blank">ݺɫۺϾþ</a>| <a href="http://www.e8ux.cn" target="_blank">Ʒþþþþҹҹ</a>| <a href="http://www.mljy168.cn" target="_blank">޹þþۺ</a>| <a href="http://www.227s.cn" target="_blank">ݺɫþþۺƵպ</a>| <a href="http://www.kaczw3.cn" target="_blank">˺ݺۺϾþ88</a>| <a href="http://www.bulaozhen.cn" target="_blank">һƷþ</a>| <a href="http://www.34lz.cn" target="_blank">þþþĻɫ</a>| <a href="http://www.918gn.cn" target="_blank">þþۺϾɫۺ̾</a>| <a href="http://www.ysbzxx.com.cn" target="_blank">ƷþþĻ</a>| <a href="http://www.xiatiancaiwu.cn" target="_blank">ٸ88þĻ</a>| <a href="http://www.yangshuohappy.cn" target="_blank">þùƷһ</a>| <a href="http://www.terris.cn" target="_blank">9999Ʒŷþþþþ </a>| <a href="http://www.six-dream.cn" target="_blank">þùһ</a>| <a href="http://www.gpshd.cn" target="_blank">ٸþĻ</a>| <a href="http://www.665m.cn" target="_blank">þۺ༤</a>| <a href="http://www.zjzlgs.cn" target="_blank">Ʒþþþû</a>| <a href="http://www.designelite.com.cn" target="_blank">޹Ʒľþþ</a>| <a href="http://www.shejia.net.cn" target="_blank">þAV˳׽</a>| <a href="http://www.hanlexin.cn" target="_blank">˾Ʒþһav </a>| <a href="http://www.gljqk.cn" target="_blank">ݺɫۺվþþþþþø</a>| <a href="http://www.dartools.cn" target="_blank">Ʒþþþþ</a>| <a href="http://www.zhhhtch.cn" target="_blank">þþþƷ</a>| <a href="http://www.kzhg.net.cn" target="_blank">޹һ˾þþƷ</a>| <a href="http://www.vzas.cn" target="_blank">Ʒ޾þþþþ</a>| <a href="http://www.hbjyhg.cn" target="_blank">þþþëƬ</a>| <a href="http://www.bjnyjdxcj.cn" target="_blank">޹˾þۺ</a>| <script> (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })(); </script> </body>