• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            也許二杈樹是很好用的,在插入和查找的時候時間復(fù)雜度一般為O(logN),但如果左右子樹失去平衡,也可能達(dá)到O(N)。為了防止這種現(xiàn)象發(fā)生,一種解決辦法是是左右子樹盡量保持平衡,即建立一種平衡有序樹AVL樹。?????
            ????一棵AVL樹是其每個結(jié)點的左子樹和右子樹的高度最多相差1的二杈有序樹。空樹的高度定義為-1。
            ????AVL樹的結(jié)點聲明;
            typedef?struct?avlnode
            {
            ????int?height;//比普通二杈有序樹多了一個高度信息?
            ????ElemType?data;
            ????struct?bnode?*lchild,?*rchild;
            }?*AvlTree,?*Position;????
            //----------AVL樹基本操作------------?------------------------------
            AvlTree?MakeEmpty(AvlTree?T);
            Position?Find(ElemType?x,?AvlTree?T);
            Position?FindMin(AvlTree?T);
            Position?FindMax(AvlTree?T);
            static?int?Height(Position?P);
            AvlTree?Insert(ElemType?x,?AvlTree?T);
            AvlTree?Delete(ElemType?x,?AvlTree?T);
            ElemType?Retrieve(Position?P);

            //----------AVL樹基本操作的算法實現(xiàn)--------------------
            遞歸算法:?
            Position?FindMin(AvlTree?T)
            {
            ????if(T==NULL)
            ????????return?NULL;
            ????else?if(T->lchild?==?NULL)
            ????????return?T;
            ????else
            ????????return?FindMin(T->lchild);
            }

            Position?FindMax(AvlTree?T)
            {
            ????if(T==NULL)
            ????????return?NULL;
            ????else?if(T->rchild?==?NULL)
            ????????return?T;
            ????else
            ????????return?FindMax(T->rchild);
            }
            非遞歸算法:
            Position?FindMin(AvlTree?T)
            {
            ????if(T!=NULL)
            ????{
            ????????while(T->lchild?!=?NULL)
            ????????????T?=?T->lchild;
            ????}
            ????
            ????return?T;
            }

            Position?FindMax(AvlTree?T)
            {
            ????if(T!=NULL)
            ????{
            ????????while(T->rchild?!=?NULL)
            ????????????T?=?T->rchild;
            ????}
            ????
            ????return?T;
            }
            //返回P點的高度?
            static?int?Height(Position?P)
            {
            ????if(P==NULL)
            ????????return?-1;
            ????else
            ????????return?P->height;
            }
            //在對一棵AVL樹進(jìn)行插入操作后,可能會破壞它的平衡條件,因此必須對新的AVL樹進(jìn)行調(diào)整,
            這里用到了“單旋轉(zhuǎn)”或“雙旋轉(zhuǎn)”的算法,分別適用于:
            單左旋轉(zhuǎn)(SingleRotateWithLeft);對結(jié)點p的左孩子的左子樹進(jìn)行一次插入?
            單右旋轉(zhuǎn)(SingleRotateWithRight);對結(jié)點p的右孩子的右子樹進(jìn)行一次插入??
            雙左旋轉(zhuǎn)(DoubleRotateWithLeft);對結(jié)點p的左孩子的右子樹進(jìn)行一次插入?
            雙右旋轉(zhuǎn)(DoubleRotateWithRight);對結(jié)點p的右孩子的左子樹進(jìn)行一次插入??
            static?Position?SingleRotateWithLeft(Position?K2)
            {
            ????Position?K1;
            ????
            ????K1?=?K2->lchild;??//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)?
            ????K2->lchild?=?K1->rchild;
            ????K1->rchild?=?K2;
            ????
            ????K2->height?=?Max(Height(K2->lchild),?Height(K2->rchild))?+?1;
            ????K1->height?=?Max(Height(K1->lchild),?Height(K1->rchild))?+?1;
            ????
            ????return?K1;
            }

            static?Position?SingleRotateWithRight(Position?K2)
            {
            ????Position?K1;
            ????
            ????K1?=?K2->rchild;????//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)?
            ????K2->rchild?=?K1->lchild;
            ????K1->lchild?=?K2;
            ????
            ????K2->height?=?Max(Height(K2->lchild),?Height(K2->rchild))?+?1;
            ????K1->height?=?Max(Height(K1->lchild),?Height(K1->rchild))?+?1;
            ????
            ????return?K1;
            }

            static?Position?DoubleRotateWithLeft(Position?K3)
            {
            ????K3->lchild?=?SingleRotateWithRight(K3->lchild);?//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)?
            ????
            ????return?SingleRotateWithLeft(K3);?//在K3和K2之間進(jìn)行一次單左旋轉(zhuǎn)?
            }

            static?Position?DoubleRotateWithRight(Position?K3)
            {
            ????K3->rchild?=?SingleRotateWithLeft(K3->rchild);?//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)?
            ????
            ????return?SingleRotateWithRight(K3);//在K3和K2之間進(jìn)行一次單右旋轉(zhuǎn)?
            }

            //向AVL樹插入結(jié)點的操作?
            AvlTree?Insert(float?x,?AvlTree?T)
            {
            ????if(T?==?NULL)
            ????{
            ????????T?=?(Position)malloc(sizeof(struct?avlnode));
            ????????if(T?==?NULL)
            ????????{
            ????????????puts("wrong");?
            ????????????exit(1);
            ????????}
            ????????T->data?=?x;??
            ????????T->height?=?0;
            ????????T->lchild?=?T->rchild?=?NULL;
            ????}
            ????else?if(T->data?==?x)//不做任何插入操作?
            ????????;
            ????else?if(T->data?>?x)//把s所指結(jié)點插入到左子樹中
            ????{
            ??????????T->lchild?=?Insert(x,?T->lchild);
            ??????????if(Height(T->lchild)?-?Height(T->rchild)?==?2)?//若平衡被破壞
            ??????????{
            ????????????if(x?<?T->lchild->data)?????//若x比T的左孩子小,對T單左旋轉(zhuǎn)??
            ????????????????T?=?SingleRotateWithLeft(T);
            ????????????else?????????????????????????//否則,對T雙左旋轉(zhuǎn)???
            ????????????????T?=?DoubleRotateWithLeft(T);
            ????????}
            ????}
            ????else??????//把s所指結(jié)點插入到右子樹中
            ????{
            ??????????T->rchild?=?Insert(x,?T->rchild);
            ??????????if(Height(T->rchild)?-?Height(T->lchild)?==?2)
            ??????????{
            ????????????if(x?>?T->rchild->data)????//若x比T的右孩子大,對T單右旋轉(zhuǎn)??
            ????????????????T?=?SingleRotateWithRight(T);
            ????????????else????????????????????????//否則,對T雙右旋轉(zhuǎn)???
            ????????????????T?=?DoubleRotateWithRight(T);
            ????????}
            ????}
            ????T->height?=?Max(Height(T->lchild),?Height(T->rchild))?+?1;
            ????
            ????return?T;???
            }
            int?Max(int?a,?int?b)
            {
            ????if(a?>?b)
            ????????return?a;
            ????else
            ????????return?b;
            }
            還有一種AVL樹,它的結(jié)構(gòu)中不包含高度特征,但包含一個平衡因子bf,用來判斷結(jié)點的平衡性,若左孩子比右孩子高,則bf==1;否則,bf==-1;若左右相等則bf==0。
            ????AVL樹的結(jié)點聲明;
            enum??BALANCE{LH?=?1,?EH?=?0,?RH?=?-1};
            typedef?struct?avlnode
            {
            ????BALANCE?bf;//比普通二杈有序樹多了一個平衡因子信息
            ????ElemType?data;
            ????struct?avlnode?*lchild,?*rchild;
            }?*AvlTree,?*Position;
            //----------AVL樹基本操作------------?------------------------------
            AvlTree?MakeEmpty(AvlTree?T);
            Position?Find(ElemType?x,?AvlTree?T);
            Position?FindMin(AvlTree?T);
            Position?FindMax(AvlTree?T);
            AvlTree?Insert(ElemType?x,?AvlTree?T);
            AvlTree?Delete(ElemType?x,?AvlTree?T);
            ElemType?Retrieve(Position?P);

            //----------AVL樹基本操作的算法實現(xiàn)--------------------

            //在對一棵AVL樹進(jìn)行插入操作后,可能會破壞它的平衡條件,因此必須對新的AVL樹進(jìn)行調(diào)整,
            這里用到了“單旋轉(zhuǎn)”或“雙旋轉(zhuǎn)”的算法,分別適用于:
            單左旋轉(zhuǎn)(SingleRotateWithLeft);對結(jié)點p的左孩子的左子樹進(jìn)行一次插入
            單右旋轉(zhuǎn)(SingleRotateWithRight);對結(jié)點p的右孩子的右子樹進(jìn)行一次插入
            雙左旋轉(zhuǎn)(DoubleRotateWithLeft);對結(jié)點p的左孩子的右子樹進(jìn)行一次插入
            雙右旋轉(zhuǎn)(DoubleRotateWithRight);對結(jié)點p的右孩子的左子樹進(jìn)行一次插入
            Position?SingleRotateWithLeft(Position?K2)
            {
            ????Position?K1;

            ????K1?=?K2->lchild;??//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)
            ????K2->lchild?=?K1->rchild;
            ????K1->rchild?=?K2;

            ????return?K1;
            }

            Position?SingleRotateWithRight(Position?K2)
            {
            ????Position?K1;

            ????K1?=?K2->rchild;????//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)
            ????K2->rchild?=?K1->lchild;
            ????K1->lchild?=?K2;

            ????return?K1;
            }

            Position?DoubleRotateWithLeft(Position?K3)
            {
            ????K3->lchild?=?SingleRotateWithRight(K3->lchild);?//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)

            ????return?SingleRotateWithLeft(K3);?//在K3和K2之間進(jìn)行一次單左旋轉(zhuǎn)
            }

            Position?DoubleRotateWithRight(Position?K3)
            {
            ????K3->rchild?=?SingleRotateWithLeft(K3->rchild);?//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)

            ????return?SingleRotateWithRight(K3);//在K3和K2之間進(jìn)行一次單右旋轉(zhuǎn)
            }

            AvlTree?LeftBalance(AvlTree?T)?//左平衡處理
            {
            ??????AvlTree?lT?=?T->lchild;
            ??????switch?(lT->bf)?//檢查左樹的平衡度,并做相應(yīng)處理
            ??????{
            ????????????case?LH?:???T?=?SingleRotateWithLeft(T);?//若新結(jié)點插入在T的左孩子的左子樹上,對T單左旋轉(zhuǎn)
            ????????????????????????T->bf?=?lT->bf?=?EH;???//重新設(shè)置平衡度
            ????????????????????????break;
            ????????????case?RH?:???AvlTree?rT?=?lT->rchild;//若新結(jié)點插入在T的左孩子的右子樹上,對T雙左旋轉(zhuǎn),并重新設(shè)置平衡度
            ????????????????????????switch?(rT->bf)
            ????????????????????????{
            ??????????????????????????????case?LH?:???T->bf?=?RH;
            ??????????????????????????????????????????lT->bf?=?EH;
            ??????????????????????????????????????????break;
            ??????????????????????????????case?EH?:???T->bf?=?lT->bf?=?EH;?//我感覺這種情況應(yīng)該不會出現(xiàn)
            ??????????????????????????????????????????break;
            ??????????????????????????????case?RH?:???T->bf?=?EH;
            ??????????????????????????????????????????lT->bf?=?LH;
            ??????????????????????????????????????????break
            ????????????????????????}
            ????????????????????????rT->bf?=?EH;
            ????????????????????????T?=?DoubleRotateWithLeft(T);
            ????????????????????????break;
            ??????}
            ??????return?T;
            }

            AvlTree?RightBalance(AvlTree?T)?//右平衡處理
            {
            ??????AvlTree?rT?=?T->rchild;
            ??????switch?(rT->bf)?//檢查右樹的平衡度,并做相應(yīng)處理
            ??????{
            ????????????case?LH?:???T?=?SingleRotateWithRight(T);?//若新結(jié)點插入在T的右孩子的右子樹上,對T單右旋轉(zhuǎn)
            ????????????????????????T->bf?=?rT->bf?=?EH;???//重新設(shè)置平衡度
            ????????????????????????break;
            ????????????case?RH?:???AvlTree?lT?=?rT->lchild;//若新結(jié)點插入在T的右孩子的左子樹上,對T雙右旋轉(zhuǎn),并重新設(shè)置平衡度
            ????????????????????????switch?(lT->bf)
            ????????????????????????{
            ??????????????????????????????case?LH?:???T->bf?=?EH;
            ??????????????????????????????????????????rT->bf?=?RH;
            ??????????????????????????????????????????break;
            ??????????????????????????????case?EH?:???T->bf?=?rT->bf?=?EH;?//我感覺這種情況應(yīng)該不會出現(xiàn)
            ??????????????????????????????????????????break;
            ??????????????????????????????case?RH?:???T->bf?=?LH;
            ??????????????????????????????????????????rT->bf?=?EH;
            ??????????????????????????????????????????break
            ????????????????????????}
            ????????????????????????lT->bf?=?EH;
            ????????????????????????T?=?DoubleRotateWithRight(T);
            ????????????????????????break;
            ??????}
            ??????return?T;
            }

            //向AVL樹插入結(jié)點的操作
            AvlTree?Insert(ElemType?x,?AvlTree?T,?bool?&?taller)
            {
            ????if(T?==?NULL)
            ????{
            ????????T?=?(Position)malloc(sizeof(struct?avlnode));
            ????????if(T?==?NULL)
            ????????{
            ????????????puts("wrong");
            ????????????exit(1);
            ????????}
            ????????T->data?=?x;
            ????????T->lchild?=?T->rchild?=?NULL;
            ????????T->bf?=?EH;
            ????????taller?=?true;?//插入新結(jié)點,樹“長高”,置taller為真值
            ????}
            ????else?if(T->data?==?x)//不做任何插入操作
            ????????taller?=?false;?//樹未長高,置taller為假值
            ????else?if(T->data?>?x)//把x插入到左子樹中
            ????{
            ??????????T->lchild?=?Insert(x,?T->lchild,?taller);
            ??????????if?(taller)//已經(jīng)插入左子樹,且樹“長高”,需要檢查平衡度,并做相應(yīng)處理
            ??????????{
            ??????????????????switch(T->bf)
            ??????????????????{
            ????????????????????????case?LH?:???T?=?LeftBalance(T);//原本左樹高于右樹,需做左平衡處理,樹高不變
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ????????????????????????case?EH?:???T->bf?=?LH;//原本左右等高,現(xiàn)在左高于右,且樹“長高”
            ????????????????????????????????????taller?=?true;
            ????????????????????????????????????break;
            ????????????????????????case?RH?:???T->bf?=?EH;?//原本右樹高于左樹,現(xiàn)在左右等高,樹高不變
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ??????????????????}
            ????????????}
            ????}
            ????else??????//把x插入到右子樹中,仿照處理左樹的方法處理
            ????{
            ????????????T->rchild?=?Insert(x,?T->rchild,?taller);
            ??????????if?(taller)
            ??????????{
            ??????????????????switch(T->bf)
            ??????????????????{
            ????????????????????????case?LH?:???T->bf?=?EH;
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ????????????????????????case?EH?:???T->bf?=?RH;
            ????????????????????????????????????taller?=?true;
            ????????????????????????????????????break;
            ????????????????????????case?RH?:???T?=?RightBalance(T);
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ??????????????????}
            ????????????}
            ????}

            ????return?T;
            }
            AVL樹應(yīng)用示例:
            ?/*輸入一組數(shù),存儲到AVL樹中,并進(jìn)行輸出*/
            #include?<iostream>
            using?namespace?std;

            #define?MAX?100
            enum??BALANCE{LH?=?1,?EH?=?0,?RH?=?-1};
            typedef?struct?avlnode
            {
            ????BALANCE?bf;//比普通二杈有序樹多了一個平衡因子信息
            ????int?data;
            ????struct?avlnode?*lchild,?*rchild;
            }?*AvlTree,?*Position;

            int?Input(int?a[]);//輸入數(shù)據(jù)到數(shù)組,未排序
            void?Print(const?int?a[],?int?len);?//輸入未排序的原始數(shù)據(jù)
            AvlTree?Sort(AvlTree?A,?const?int?a[],?int?len);?//對數(shù)據(jù)進(jìn)行排序
            AvlTree?Insert(int?x,?AvlTree?T,?bool?&?taller);?//把數(shù)據(jù)存儲到AVL樹中
            Position?SingleRotateWithLeft(Position?K2);?//單左旋轉(zhuǎn)
            Position?SingleRotateWithRight(Position?K2);?//單右旋轉(zhuǎn)
            Position?DoubleRotateWithLeft(Position?K3);//雙左旋轉(zhuǎn)
            Position?DoubleRotateWithRight(Position?K3);//雙右旋轉(zhuǎn)
            AvlTree?LeftBalance(AvlTree?T);//?左平衡處理
            AvlTree?RightBalance(AvlTree?T);?//右平衡處理
            void?inorder(const?AvlTree?bt);?//中序遍歷AVL樹
            void?PrintBT(AvlTree?bt);?//輸出二杈樹

            int?main(void)
            {
            ????int?a[MAX]={0};
            ????int?len;
            ????AvlTree?A=NULL;

            ????len?=?Input(a);
            ????Print(a,?len);
            ????printf("\n");
            ????A?=?Sort(A,?a,?len);
            ????PrintBT(A);
            ????printf("\n");
            ????inorder(A);
            ????system("pause");
            ??????return?0;
            }
            int?Input(int?a[])
            {
            ????int?i=0;

            ????do{
            ????????a[i++]?=?rand()%1000;//輸入隨機(jī)數(shù)
            ????}?while(i<MAX);
            ????return?i;
            }
            void?Print(const?int?a[],?int?len)
            {
            ????int?i;

            ????for(i=0;?i<len;?i++)
            ????????printf("%d\t",?a[i]);
            }
            AvlTree?Sort(AvlTree?A,?const?int?a[],?int?len)
            {
            ????int?i;
            ????bool?taller?=?false;

            ????for(i=0;?i<len;?i++)
            ?????????A?=?Insert(a[i],?A,?taller);
            ????return?A;
            }
            void?inorder(const?AvlTree?bt)
            {
            ????AvlTree?p=bt,?stack[MAX];//p表示當(dāng)前結(jié)點,棧stack[]用來存儲結(jié)點
            ????int?top=-1;

            ????do
            ????{
            ????????while(p?!=?NULL)//先處理結(jié)點的左孩子結(jié)點,把所有左孩子依次入棧
            ????????{
            ????????????stack[++top]?=?p;
            ????????????p?=?p->lchild;
            ????????}
            ????????if(top?>=?0)?//所有左孩子處理完畢后
            ????????{
            ????????????p?=?stack[top--];//棧頂元素出棧
            ????????????printf("%d\t",?p->data);?//輸出該結(jié)點
            ????????????p?=?p->rchild;?//處理其右孩子結(jié)點
            ????????}
            ????}?while((p?!=?NULL)||(top?>=?0));
            }

            //向AVL樹插入結(jié)點的操作
            AvlTree?Insert(int?x,?AvlTree?T,?bool?&?taller)
            {
            ????if(T?==?NULL)
            ????{
            ????????T?=?(Position)malloc(sizeof(struct?avlnode));
            ????????if(T?==?NULL)
            ????????{
            ????????????puts("wrong");
            ????????????exit(1);
            ????????}
            ????????T->data?=?x;
            ????????T->lchild?=?T->rchild?=?NULL;
            ????????T->bf?=?EH;
            ????????taller?=?true;?//插入新結(jié)點,樹“長高”,置taller為真值
            ????}
            ????else?if(T->data?==?x)//不做任何插入操作
            ????????taller?=?false;?//樹未長高,置taller為假值
            ????else?if(T->data?>?x)//把x插入到左子樹中
            ????{
            ??????????T->lchild?=?Insert(x,?T->lchild,?taller);
            ??????????if?(taller)//已經(jīng)插入左子樹,且樹“長高”,需要檢查平衡度,并做相應(yīng)處理
            ??????????{
            ??????????????????switch(T->bf)
            ??????????????????{
            ????????????????????????case?LH?:???T?=?LeftBalance(T);//原本左樹高于右樹,需做左平衡處理,樹高不變
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ????????????????????????case?EH?:???T->bf?=?LH;//原本左右等高,現(xiàn)在左高于右,且樹“長高”
            ????????????????????????????????????taller?=?true;
            ????????????????????????????????????break;
            ????????????????????????case?RH?:???T->bf?=?EH;?//原本右樹高于左樹,現(xiàn)在左右等高,樹高不變
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ??????????????????}
            ????????????}
            ????}
            ????else??????//把x插入到右子樹中,仿照處理左樹的方法處理
            ????{
            ????????????T->rchild?=?Insert(x,?T->rchild,?taller);
            ??????????if?(taller)
            ??????????{
            ??????????????????switch(T->bf)
            ??????????????????{
            ????????????????????????case?LH?:???T->bf?=?EH;
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ????????????????????????case?EH?:???T->bf?=?RH;
            ????????????????????????????????????taller?=?true;
            ????????????????????????????????????break;
            ????????????????????????case?RH?:???T?=?RightBalance(T);
            ????????????????????????????????????taller?=?false;
            ????????????????????????????????????break;
            ??????????????????}
            ????????????}
            ????}

            ????return?T;
            }

            Position?SingleRotateWithLeft(Position?K2)
            {
            ????Position?K1;

            ????K1?=?K2->lchild;??//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)
            ????K2->lchild?=?K1->rchild;
            ????K1->rchild?=?K2;

            ????return?K1;
            }

            Position?SingleRotateWithRight(Position?K2)
            {
            ????Position?K1;

            ????K1?=?K2->rchild;????//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)
            ????K2->rchild?=?K1->lchild;
            ????K1->lchild?=?K2;

            ????return?K1;
            }

            Position?DoubleRotateWithLeft(Position?K3)
            {
            ????K3->lchild?=?SingleRotateWithRight(K3->lchild);?//在K2和K1之間進(jìn)行一次單右旋轉(zhuǎn)

            ????return?SingleRotateWithLeft(K3);?//在K3和K2之間進(jìn)行一次單左旋轉(zhuǎn)
            }

            Position?DoubleRotateWithRight(Position?K3)
            {
            ????K3->rchild?=?SingleRotateWithLeft(K3->rchild);?//在K2和K1之間進(jìn)行一次單左旋轉(zhuǎn)

            ????return?SingleRotateWithRight(K3);//在K3和K2之間進(jìn)行一次單右旋轉(zhuǎn)
            }

            AvlTree?LeftBalance(AvlTree?T)?//左平衡處理
            {
            ??????AvlTree?lT?=?T->lchild;
            ??????switch?(lT->bf)?//檢查左樹的平衡度,并做相應(yīng)處理
            ??????{
            ????????????case?LH?:???T?=?SingleRotateWithLeft(T);?//若新結(jié)點插入在T的左孩子的左子樹上,對T單左旋轉(zhuǎn)
            ????????????????????????T->bf?=?lT->bf?=?EH;???//重新設(shè)置平衡度
            ????????????????????????break;
            ????????????case?RH?:???AvlTree?rT?=?lT->rchild;//若新結(jié)點插入在T的左孩子的右子樹上,對T雙左旋轉(zhuǎn),并重新設(shè)置平衡度
            ????????????????????????switch?(rT->bf)
            ????????????????????????{
            ??????????????????????????????case?LH?:???T->bf?=?RH;
            ??????????????????????????????????????????lT->bf?=?EH;
            ??????????????????????????????????????????break;
            ??????????????????????????????case?EH?:???T->bf?=?lT->bf?=?EH;?//我感覺這種情況應(yīng)該不會出現(xiàn)
            ??????????????????????????????????????????break;
            ??????????????????????????????case?RH?:???T->bf?=?EH;
            ??????????????????????????????????????????lT->bf?=?LH;
            ??????????????????????????????????????????break;
            ????????????????????????}
            ????????????????????????rT->bf?=?EH;
            ????????????????????????T?=?DoubleRotateWithLeft(T);
            ????????????????????????break;
            ??????}
            ??????return?T;
            }

            AvlTree?RightBalance(AvlTree?T)?//右平衡處理
            {
            ??????AvlTree?rT?=?T->rchild;
            ??????switch?(rT->bf)?//檢查右樹的平衡度,并做相應(yīng)處理
            ??????{
            ????????????case?RH?:???T?=?SingleRotateWithRight(T);?//若新結(jié)點插入在T的右孩子的右子樹上,對T單右旋轉(zhuǎn)
            ????????????????????????T->bf?=?rT->bf?=?EH;???//重新設(shè)置平衡度
            ????????????????????????break;
            ????????????case?LH?:???AvlTree?lT?=?rT->lchild;//若新結(jié)點插入在T的右孩子的左子樹上,對T雙右旋轉(zhuǎn),并重新設(shè)置平衡度
            ????????????????????????switch?(lT->bf)
            ????????????????????????{
            ??????????????????????????????case?LH?:???T->bf?=?EH;
            ??????????????????????????????????????????rT->bf?=?RH;
            ??????????????????????????????????????????break;
            ??????????????????????????????case?EH?:???T->bf?=?rT->bf?=?EH;?//我感覺這種情況應(yīng)該不會出現(xiàn)
            ??????????????????????????????????????????break;
            ??????????????????????????????case?RH?:???T->bf?=?LH;
            ??????????????????????????????????????????rT->bf?=?EH;
            ??????????????????????????????????????????break;
            ????????????????????????}
            ????????????????????????lT->bf?=?EH;
            ????????????????????????T?=?DoubleRotateWithRight(T);
            ????????????????????????break;
            ??????}
            ??????return?T;
            }

            void?PrintBT(AvlTree?bt)
            {
            ????if(bt?!=?NULL)
            ????{
            ????????printf("%d",?bt->data);
            ????????if(bt->lchild!=NULL?||?bt->rchild!=NULL)
            ????????{
            ????????????printf("(");
            ????????????PrintBT(bt->lchild);
            ????????????if(bt->rchild!=NULL)
            ????????????????printf(",");
            ????????????PrintBT(bt->rchild);
            ????????????printf(")");
            ????????}
            ????}
            }
            Posted on 2006-06-04 16:53 夢想飛揚 閱讀(1408) 評論(4)  編輯 收藏 引用

            Feedback

            # re: 平衡有序樹AVL樹之兩種思路  回復(fù)  更多評論   

            2006-06-05 19:27 by TH
            你一定是一個算法高手. 呵呵,收集你很多文章 .
            關(guān)注

            # re: 平衡有序樹AVL樹之兩種思路  回復(fù)  更多評論   

            2007-07-30 16:07 by ll
            沒看到有delete的實現(xiàn)。

            # re: 平衡有序樹AVL樹之兩種思路  回復(fù)  更多評論   

            2007-07-31 15:27 by ??
            找到離插入點最近的不平衡節(jié)點,然后修改該點到插入點的路徑(不包括這兩點)上的balance factor,再作4種rotation處理,比之遞歸、彈棧都要高效。

            # re: 平衡有序樹AVL樹之兩種思路  回復(fù)  更多評論   

            2008-01-20 22:10 by 關(guān)注
            不錯!!

            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久精品九九亚洲精品天堂| 久久免费视频网站| 久久人人爽人人爽人人片AV东京热 | 久久w5ww成w人免费| 久久精品国产亚洲AV麻豆网站 | 久久综合欧美成人| 亚洲欧洲久久久精品| 人妻无码中文久久久久专区| 国产亚洲精久久久久久无码AV| 2021国内久久精品| 99久久人人爽亚洲精品美女| 久久婷婷人人澡人人爽人人爱| 亚洲成色999久久网站| 欧美熟妇另类久久久久久不卡| 久久亚洲2019中文字幕| 97精品久久天干天天天按摩| 欧美日韩精品久久免费| 国产免费久久久久久无码| 久久天天躁狠狠躁夜夜96流白浆| 亚洲国产成人久久一区WWW| 人人狠狠综合久久亚洲婷婷| 久久久av波多野一区二区| 亚洲人AV永久一区二区三区久久| 亚洲综合精品香蕉久久网97| 久久精品亚洲一区二区三区浴池 | 亚洲а∨天堂久久精品9966| 日本道色综合久久影院| 99久久精品影院老鸭窝| 无码人妻久久一区二区三区免费| 久久精品桃花综合| 亚洲国产精品成人久久蜜臀 | 精品人妻伦九区久久AAA片69| 国产情侣久久久久aⅴ免费| 久久久久久国产a免费观看黄色大片| 久久久久国产| 欧美性大战久久久久久| 亚洲欧洲精品成人久久曰影片| 亚洲国产一成久久精品国产成人综合 | 久久电影网2021| 久久最近最新中文字幕大全 | 国产高潮久久免费观看|