生成樹算法的一個(gè)應(yīng)用
#include <stdio.h>

#include <stdlib.h>

int city[2005];

void make ( int n )


{

for ( int i=0; i<n; i++ )

{
city[i] = -1;
}
}

int find ( int a )


{

if ( city[a] < 0 )

{
return a;
}
int root = find ( city[a] );
city[a] = root;

return root;
}

void un ( int a, int b )


{

int ra = find ( a );
int rb = find ( b );

if ( city[ra] < city[rb] )

{
city[ra] += city[rb];
city[rb] = ra;
}
else

{
city[rb] += city[ra];
city[ra] = rb;
}
}

typedef struct


{
int b;
int e;
int len;
}type;
type seg[10005];

int cmp ( const void *a, const void *b )


{

return ( ( type * )a )->len - ( ( type * )b )->len;
}

int main ()


{

int n, m;
int a, b, l;

while ( scanf ( "%d%d", &n, &m ) != EOF )

{

for ( int i=0; i<m; i++ )

{
scanf ( "%d%d%d", &a, &b, &l );
seg[i].b = a - 1;
seg[i].e = b - 1;
seg[i].len = l;
}
qsort ( seg, m, sizeof ( type ), cmp );

int max = -1;
make ( n );
for ( i=0; i<m; i++ )

{
if ( find ( seg[i].b ) != find ( seg[i].e ) )

{
if ( max < seg[i].len )

{
max = seg[i].len;
}
un ( seg[i].b, seg[i].e );
}
}

printf ( "%d\n", max );
}
return 0;
}
#include <stdio.h>
#include <stdlib.h>
int city[2005];
void make ( int n )

{
for ( int i=0; i<n; i++ )
{
city[i] = -1;
}
}
int find ( int a )

{
if ( city[a] < 0 )
{
return a;
}
int root = find ( city[a] );
city[a] = root;
return root;
}
void un ( int a, int b )

{
int ra = find ( a );
int rb = find ( b );
if ( city[ra] < city[rb] )
{
city[ra] += city[rb];
city[rb] = ra;
}
else
{
city[rb] += city[ra];
city[ra] = rb;
}
}
typedef struct

{
int b;
int e;
int len;
}type;
type seg[10005];
int cmp ( const void *a, const void *b )

{
return ( ( type * )a )->len - ( ( type * )b )->len;
}
int main ()

{
int n, m;
int a, b, l;
while ( scanf ( "%d%d", &n, &m ) != EOF )
{
for ( int i=0; i<m; i++ )
{
scanf ( "%d%d%d", &a, &b, &l );
seg[i].b = a - 1;
seg[i].e = b - 1;
seg[i].len = l;
}
qsort ( seg, m, sizeof ( type ), cmp );
int max = -1;
make ( n );
for ( i=0; i<m; i++ )
{
if ( find ( seg[i].b ) != find ( seg[i].e ) )
{
if ( max < seg[i].len )
{
max = seg[i].len;
}
un ( seg[i].b, seg[i].e );
}
}
printf ( "%d\n", max );
}
return 0;
}

