昨天在上篇blog里描寫了如何把STL容器放到共享內存里去,不過由于好久不寫blog,發覺詞匯組織能力差了很多,不少想寫的東西寫的很零散,今天剛好翻看自己的書簽,看到一篇挺老的文章,不過從共享內存到STL容器講述得蠻全面,還提供了學習的實例,所以順便翻譯過來,并附上原文地址。
共享內存(shm)是當前主流UNIX系統中的一種IPC方法,它允許多個進程把同一塊物理內存段(segment)映射(map)到它們的地址空間中去。既然內存段對于各自附著(attach)的進程是共享的,這些進程可以很方便的通過這塊共享內存上的共有數據進行通信。因此,顧名思義,共享內存就是進程之間共享的一組內存段。當一個進程附著到一塊共享內存上后,它得到一個指向這塊共享內存的指針;該進程可以像使用其他內存一樣使用這塊共享內存。當然,由于這塊內存同樣會被其他進程訪問或寫入,所以必須要注意進程同步問題。
參考如下代碼,這是UNIX系統上使用共享內存的一般方法(注:本文調用的是POSIX函數):
//Get shared memory id
//shared memory key
const key_t ipckey = 24568;
//shared memory permission; can be
//read and written by anybody
const int perm = 0666;
//shared memory segment size
size_t shmSize = 4096;
//Create shared memory if not
//already created with specified
//permission
int shmId = shmget
(ipckey,shmSize,IPC_CREAT|perm);
if (shmId ==-1) {
//Error
}
//Attach the shared memory segment
void* shmPtr = shmat(shmId,NULL,0);
struct commonData* dp = (struct commonData*)shmPtr;
//detach shared memory
shmdt(shmPtr);
|
存放在共享內存中的數據結構
當保存數據到共享內存中時需要留意,參考如下結構:
struct commonData {
int sharedInt;
float sharedFloat;
char* name;
Struct CommonData* next;
};
|
進程A把數據寫入共享內存:
//Attach shared memory
struct commonData* dp =
(struct commonData*) shmat
(shmId,NULL,0);
dp->sharedInt = 5;
.
.
dp->name = new char [20];
strcpy(dp->name,"My Name");
dp->next = new struct commonData();
|
稍后,進程B把數據讀出:
struct commonData* dp =
(struct commonData*) shmat
(shmId,NULL,0);
//count = 5;
int count = dp->sharedInt;
//problem
printf("name = [%s]\n",dp->name);
dp = dp->next; //problem
|
結構 commonData
的成員 name
和指向下一個結構的 next
所指向的內存分別從進程A的地址空間中的堆上分配,顯然 name 和 next 指向的內存也只有進程A可以訪問。當進程B訪問 dp->name
或者 dp->next
時候,由于它在訪問自己地址空間以外的內存空間,所以這將是非法操作(memory violation),它無法正確得到 name
和 next
所指向的內存。因此,所有的共享內存中的指針必須同樣指向共享內存中的地址。(這也是為什么包含虛函數繼承的C++類對象不能放到共享內存中的原因——這是另外一個話題。注:因為虛函數的具體實現可能會在其他的內存空間中)由于這些條件限制,放入共享內存中的結構應該簡單簡單。(注:我覺得最好避免使用指針)
共享內存中的STL容器
想像一下把STL容器,例如map, vector, list等等,放入共享內存中,IPC一旦有了這些強大的通用數據結構做輔助,無疑進程間通信的能力一下子強大了很多。我們沒必要再為共享內存設計其他額外的數據結構,另外,STL的高度可擴展性將為IPC所驅使。STL容器被良好的封裝,默認情況下有它們自己的內存管理方案。當一個元素被插入到一個STL列表(list)中時,列表容器自動為其分配內存,保存數據。考慮到要將STL容器放到共享內存中,而容器卻自己在堆上分配內存。一個最笨拙的辦法是在堆上構造STL容器,然后把容器復制到共享內存,并且確保所有容器的內部分配的內存指向共享內存中的相應區域,這基本是個不可能完成的任務。例如下邊進程A所做的事情:
//Attach to shared memory
void* rp = (void*)shmat(shmId,NULL,0);
//Construct the vector in shared
//memory using placement new
vector<int>* vpInA = new(rp) vector<int>*;
//The vector is allocating internal data
//from the heap in process A's address
//space to hold the integer value
(*vpInA)[0] = 22;
|
然后進程B希望從共享內存中取出數據:
vector<int>* vpInB =
(vector<int>*) shmat(shmId,NULL,0);
//problem - the vector contains internal
//pointers allocated in process A's address
//space and are invalid here
int i = *(vpInB)[0];
|
重用STL allocator
進一步考察STL容器,我們發現它的模板定義中有第二個默認參數,也就是allocator 類,該類實際是一個內存分配模型。默認的allocator是從堆上分配內存(注:這就是STL容器的默認表現,我們甚至可以改造它從一個網絡數據庫中分配空間,保存數據)。下邊是 vector 類的一部分定義:
template<class T, class A = allocator<T> >
class vector {
//other stuff
};
|
考慮如下聲明:
//User supplied allocator myAlloc
vector<int,myAlloc<int> > alocV;
|
假設 myAlloc
從共享內存上分配內存,則 alocV
將完全在共享內存上被構造,所以進程A可以如下:
//Attach to shared memory
void* rp = (void*)shmat(shmId,NULL,0);
//Construct the vector in shared memory
//using placement new
vector<int>* vpInA =
new(rp) vector<int,myAlloc<int> >*;
//The vector uses myAlloc<int> to allocate
//memory for its internal data structure
//from shared memory
(*v)[0] = 22;
|
進程B可以如下讀出數據:
vector<int>* vpInB =
(vector<int,myAlloc<int> >*) shmat
(shmId,NULL,0);
//Okay since all of the vector is
//in shared memory
int i = *(vpInB)[0];
|
所有附著在共享內存上的進程都可以安全的使用該vector。在這個例子中,該類的所有內存都在共享內存上分配,同時可以被其他的進程訪問。只要提供一個用戶自定義的allocator,任何STL容器都可以安全的放置到共享內存上。
一個基于共享內存的STL Allocator
清單 shared_allocator.hh 是一個STL Allocator的實現,SharedAllocator
是一個模板類。而 Pool
類完成共享內存的分配與回收。
template<class T>class SharedAllocator {
private:
Pool pool_; // pool of elements of sizeof(T)
public:
typedef T value_type;
typedef unsigned int size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
pointer address(reference r) const { return &r; }
const_pointer address(const_reference r) const {return &r;}
SharedAllocator() throw():pool_(sizeof(T)) {}
template<class U> SharedAllocator
(const SharedAllocator<U>& t) throw():
pool_(sizeof(T)) {}
~SharedAllocator() throw() {};
// space for n Ts
pointer allocate(size_t n, const void* hint=0)
{
return(static_cast<pointer> (pool_.alloc(n)));
}
// deallocate n Ts, don't destroy
void deallocate(pointer p,size_type n)
{
pool_.free((void*)p,n);
return;
}
// initialize *p by val
void construct(pointer p, const T& val) { new(p) T(val); }
// destroy *p but don't deallocate
void destroy(pointer p) { p->~T(); }
size_type max_size() const throw()
{
pool_.maxSize();
}
template<class U>
// in effect: typedef SharedAllocator<U> other
struct rebind { typedef SharedAllocator<U> other; };
};
template<class T>bool operator==(const SharedAllocator<T>& a,
const SharedAllocator<T>& b) throw()
{
return(a.pool_ == b.pool_);
}
template<class T>bool operator!=(const SharedAllocator<T>& a,
const SharedAllocator<T>& b) throw()
{
return(!(a.pool_ == b.pool_));
}
|
清單pool.hh是 Pool
類定義,其中靜態成員shm_
是類型 shmPool
,保證每個進程只有唯一的一個shmPool
實例。shmPool
ctor 創建并附著所需大小的內存到共享內存上。共享內存的參數,比如 鍵值、段數目、段大小,都通過環境變量傳遞給 shmPool
ctor。成員 segs_
是共享段的數目,segSize_
是每個共享段的大小,成員path_
和key_
用來創建唯一的 ipckey
。shmPool
為每個共享段創建一個信號量(semaphore)用于同步。shmPool
還在為每個共享段構造了一個 Chunk
類,一個 Chunk
代表一個共享段。每個共享段的標識是shmId_
, 信號量 semId_
控制該段的訪問許可,一個指向 Link
結構的指針表明 Chunk
類的剩余列表。
class Pool {
private:
class shmPool {
private:
struct Container {
containerMap* cont;
};
class Chunk {
public:
Chunk()
Chunk(Chunk&);
~Chunk() {}
void* alloc(size_t size);
void free (void* p,size_t size);
private:
int shmId_;
int semId_;
int lock_()
};
int key_;
char* path_;
Chunk** chunks_;
size_t segs_;
size_t segSize_;
Container* contPtr_;
int contSemId_;
public:
shmPool();
~shmPool();
size_t maxSize();
void* alloc(size_t size);
void free(void* p, size_t size);
int shmPool::lockContainer()
int unLockContainer()
containerMap* getContainer()
void shmPool::setContainer(containerMap* container)
};
private:
static shmPool shm_;
size_t elemSize_;
public:
Pool(size_t elemSize);
~Pool() {}
size_t maxSize();
void* alloc(size_t size);
void free(void* p, size_t size);
int lockContainer();
int unLockContainer();
containerMap* getContainer();
void setContainer(containerMap* container);
};
inline bool operator==(const Pool& a,const Pool& b)
{
return(a.compare(b));
}
|
把STL容器放入共享內存
假設進程A在共享內存中放入了數個容器,進程B如何找到這些容器呢?一個方法就是進程A把容器放在共享內存中的確定地址上(fixed offsets),則進程B可以從該已知地址上獲取容器。另外一個改進點的辦法是,進程A先在共享內存某塊確定地址上放置一個map容器,然后進程A再創建其他容器,然后給其取個名字和地址一并保存到這個map容器里。進程B知道如何獲取該保存了地址映射的map容器,然后同樣再根據名字取得其他容器的地址。清單container_factory.hh是一個容器工廠類。類Pool
的方法setContainer
把map容器放置在一個已知地址上,方法getContainer
可以重新獲取這個map。該工廠的方法用來在共享內存中創建、獲取和刪除容器。當然,傳遞給容器工廠的容器需要以SharedAllocator
作為allocator。
struct keyComp {
bool operator()(const char* key1,const char* key2)
{
return(strcmp(key1,key2) < 0);
}
};
class containerMap: public map<char*,void*,keyComp,SharedAllocator<char* > > {};
class containerFactory {
public:
containerFactory():pool_(sizeof(containerMap)){}
~containerFactory() {}
template<class Container> Container* createContainer
(char* key,Container* c=NULL);
template<class Container> Container* getContainer
(char* key,Container* c=NULL);
template<class Container> int removeContainer
(char* key,Container* c=NULL);
private:
Pool pool_;
int lock_();
int unlock_();
};
|
結論
本文描述的方案可以在共享內存中創建STL容器,其中的一個缺陷是,在分配共享內存之前,應該保證共享內存的總大小(segs_* segSize_
)大于你要保存STL容器的最大長度,因為一旦類Pool
超出了共享內存的,該類無法再分配新的共享內存。
完整的源代碼可以從這里下載:www.cuj.com/code
參考文獻
- Bjarne Stroustrup. The C++ Programming Language, Third Edition (Addison-Wesley, 1997).
- Matthew H. Austern. Generic Programming and the STL: Using and
Extending the C++ Standard Template Library (Addison-Wesley, 1999).
關于作者
Grum Ketema has Masters degrees in Electrical Engineering and Computer Science. With 17 years of experience in software development, he has been using C since 1985, C++ since 1988, and Java since 1997. He has worked at AT&T Bell Labs, TASC, Massachusetts Institute of Technology, SWIFT, BEA Systems, and Northrop.