• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Google code jam 2008 R1A - Numbers

            Problem

            In this problem, you have to find the last three digits before the decimal point for the number (3 + √5)n.

            For example, when n = 5, (3 + √5)5 = 3935.73982... The answer is 935.

            For n = 2, (3 + √5)2 = 27.4164079... The answer is 027.

            Input

            The first line of input gives the number of cases, T. T test cases follow, each on a separate line. Each test case contains one positive integer n.

            Output

            For each input case, you should output:

            Case #X: Y
            where X is the number of the test case and Y is the last three integer digits of the number (3 + √5)n. In case that number has fewer than three integer digits, add leading zeros so that your output contains exactly three digits.

             

            Limits

            1 <= T <= 100

            Small dataset

            2 <= n <= 30

            Large dataset

            2 <= n <= 2000000000

            Sample


            Input
             

            Output
             
            2
            5
            2
            Case #1: 935
            Case #2: 027


            Analysis

            This problem with a simple statement was in fact one of the hardest in Round 1. The input restrictions for the small input were chosen so that straightforward solutions in Java or Python, which have arbitrary-precision numbers, would fail. The trick was calculating √5 to a large enough precision and not using the default double value. It turned out that using the Windows calculator or the UNIX bc tool was enough to solve the small tests as well.

            Solving the large tests was a very different problem. The difficulty comes from the fact that √5 is irrational and for n close to 2000000000 you would need a lot of precision and a lot of time if you wanted to use the naive solution.

            The key in solving the problem is a mathematical concept called conjugation. In our problem, we simply note that (3 - √5) is a nice conjugate for (3 + √5). Let us define

            (1)     α := 3 + √5,   β := 3 - √5,   and Xn := αn + βn.
            We first note that Xn is an integer. This can be proved by using the binomial expansion. If you write everything down you'll notice that the irrational terms of the sums cancel each other out.
            (2)    
            Another observation is that βn < 1, so Xn is actually the first integer greater than αn. Thus we may just focus on computing the last three digits of X.

             

            A side note. In fact, βn tends to 0 so quickly that that our problem would be trivial if we asked for the three digits after the decimal point. For all large values of n they are always 999.

            Based on (1) and (2), there are many different solutions for finding the last three digits of Xn.

            Solution A. [the interleave of rational and irrational]

            One solution goes like this: αn can be written as (an + bn√5), where an and bn are integers. At the same time, βn is exactly (an - bn√5) and Xn = 2an. Observe that

            (3)     α(n + 1) = (3 + √5)(an + bn√5) = (3an + 5bn) + (3bn + an)√5.
            So an + 1 = 3an + 5bn and bn + 1 = 3bn + an. This can be written in matrix form as
            (4)    
            Since α0 = 1, we have (a0, b0) = (1, 0).

             

            Now we use the standard fast exponentiation to get An in O(log n) time. Note that we do all operations modulo 1000 because we just need to return the last three digits of an.

            Here's some Python code that implements this solution:

            def matrix_mult(A, B):
            C = [[0, 0], [0, 0]]
            for i in range(2):
            for j in range(2):
            for k in range(2):
            C[i][k] = (C[i][k] + A[i][j] * B[j][k]) % 1000
            return C
            def fast_exponentiation(A, n):
            if n == 1:
            return A
            else:
            if n % 2 == 0:
            A1 = fast_exponentiation(A, n/2)
            return matrix_mult(A1, A1)
            else:
            return matrix_mult(A, fast_exponentiation(A, n - 1))
            def solve(n):
            A = [[3, 5], [1, 3]]
            A_n = fast_exponentiation(A, n)
            return (2 * M_n[0][0] + 999) % 1000
            

             

            Solution B. [the quadratic equation and linear recurrence]

            Experienced contestants may notice there is a linear recurrence on the Xi's. Indeed, this is not hard to find -- the conjugation enters the picture again.

            Notice that

            (5)     α + β = 6, and α β = 4.
            So α and β are the two roots of the quadratic equation x2 - 6x + 4 = 0. i.e.,
            (6)     α2 = 6α - 4, and β2 = 6β - 4.
            Looking at (1) and (6) together, we happily get
            (7)     Xn+2 = 6Xn+1 - 4Xn.
            Such recurrence can always be written in matrix form. It is somewhat redundant, but it is useful:
            From here it is another fast matrix exponentiation. Let us see radeye's perl code that implements this approach here:
            sub mul {
            my $a = shift ;
            my $b = shift ;
            my @a = @{$a} ;
            my @b = @{$b} ;
            my @c = ($a[0]*$b[0] + $a[1]*$b[2],
            $a[0]*$b[1] + $a[1]*$b[3],
            $a[2]*$b[0] + $a[3]*$b[2],
            $a[2]*$b[1] + $a[3]*$b[3]) ;
            @c = map { $_ % 1000 } @c ;
            return @c ;
            }
            sub f {
            my $n = shift ;
            return 2 if $n == 0 ;
            return 6 if $n == 1 ;
            return 28 if $n == 2 ;
            $n -= 2 ;
            my @mat = (0, 1, 996, 6) ;
            my @smat = @mat ;
            while ($n > 0) {
            if ($n & 1) {
            @mat = mul([@mat], [@smat]) ;
            }
            @smat = mul([@smat], [@smat]) ;
            $n >>= 1 ;
            }
            return ($mat[0] * 6 + $mat[1] * 28) % 1000 ;
            }
            sub ff {
            my $r = shift ;
            $r = ($r + 999) % 1000 ;
            $r = "0" . $r while length($r) < 3 ;
            return $r ;
            }
            for $c (1..<>) {
            $n = <> ;
            print "Case #$c: ", ff(f($n)), "\n" ;
            }
            

             

            Solution C. [the periodicity of 3 digits]

            For this problem, we have another approach based on the recurrence (7). Notice that we only need to focus on the last 3 digits of Xn, which only depends on the last 3 digits of the previous two terms. The numbers eventually become periodic as soon as we have (Xi, Xi+1) and (Xj, Xj+1) with the same last 3 digits, where i < j. It is clear that we will enter a cycle no later than 106 steps. In fact, for this problem, you can write some code and find out that the cycle has the size 100 and starts at the 3rd element in the sequence. So to solve the problem we can just brute force the results for the first 103 numbers and if n is bigger than 103 return the result computed for the number (n - 3) % 100 + 3.

            Solution D. [the pure quest of numbers and combinatorics]

            Let us see one more solution of different flavor. Here is a solution not as general as the others, but tailored to this problem, and makes one feel we are almost solving this problem by hand.

            Let us look again at (2). We want to know Xn mod 1000. We know from the chinese remander theorem that if we can find Xn mod 8 and Xn mod 125, then Xn mod 1000 is uniquely determined.
            (a) For n > 2, Xn mod 8 is always 0. Since 5i ≡ 1 (mod 4), 3n-2i ≡ 1 or -1 (mod 4) depending on n, so, for n > 2,
            (b) To compute Xn mod 125, we only need to worry about i=0,1,2. All the rest are 0 mod 125. In other words, all we need to compute is
            There are various ways to compute the elements in the above quantity. The exponents can be computed by fast exponentiation, or using the fact that 3n mod 125 is periodic with cycle length at most 124. The binomial numbers can be computed using arbitrary precision integers in languages like Java and Python, or with a bit careful programming in languages like C++.

             

            Afterword

            There were many other interesting solutions submitted by the contestants, and Nathan Collins actually went through many of them and tried to summarize them in his awesome blog post.

            More information:

            Binomial numbers - Linear recurrence - Exponentiation - Chinese remainder theorem


            Source Code
            #include <iostream>

            using namespace std;

            #define Rep(i,n) for (int i(0),_n(n); i<_n; ++i)

            int* matrix_mult(int* A, int* B, int* ret) {
                Rep(i,
            2{
                    Rep(j,
            2{
                        Rep(k,
            2{
                            ret[i
            *2+k] = (ret[i*2+k] + A[i*2+j] * B[j*2+k]) % 1000;
                        }

                    }

                }

                
            return ret;
            }


            int* fast_exponentiation(int* A, int n, int* A1) {
                
            if (n == 1{
                    Rep(i,
            4{
                        A1[i] 
            = A[i];
                    }

                    
            return A1;
                }

                
            else if (n % 2 == 0{
                    
            int A_tmp[] = {0,0,0,0};
                    fast_exponentiation(A, n
            /2, A_tmp);
                    matrix_mult(A_tmp, A_tmp, A1);
                    
            return A1;
                }

                
            else {
                    
            int A_tmp[] = {0,0,0,0};
                    fast_exponentiation(A, n 
            - 1, A_tmp);
                    matrix_mult(A, A_tmp, A1);
                    
            return A1;
                }

            }


            int solve(int n) {
                
            int A[] = {3513};
                
            int ret[] = {0,0,0,0};
                fast_exponentiation(A, n, ret);
                
            return (2 * ret[0+ 999% 1000;
            }



            int main()
            {
                
            int T;
                scanf(
            "%d"&T);
                Rep(t, T) 
            {
                    
            int n;
                    scanf(
            "%d"&n);
                    
            int ret = solve(n);
                    
                    printf(
            "Case #%d: %03d\n", t+1, ret);
                }

            }

            posted on 2009-08-12 18:35 Chauncey 閱讀(161) 評(píng)論(0)  編輯 收藏 引用


            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            導(dǎo)航

            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            統(tǒng)計(jì)

            常用鏈接

            留言簿

            隨筆檔案(4)

            文章檔案(3)

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            99精品久久精品| 人妻丰满AV无码久久不卡| 三级韩国一区久久二区综合| 亚洲精品无码久久久| 久久91精品国产91久久小草 | www性久久久com| 精品久久久久久无码国产| 久久人人爽人人爽人人片AV麻烦| 97r久久精品国产99国产精| 久久国产乱子伦精品免费午夜| 亚洲色婷婷综合久久| 久久久这里有精品中文字幕| 精品久久久噜噜噜久久久| 大香伊人久久精品一区二区| 91视频国产91久久久| 7777精品久久久大香线蕉| 欧美久久一区二区三区| 久久综合九色综合精品| 久久精品人人槡人妻人人玩AV| 思思久久好好热精品国产| 久久AⅤ人妻少妇嫩草影院| 99麻豆久久久国产精品免费| 国产A三级久久精品| 2021最新久久久视精品爱| 久久99热这里只有精品国产| 日韩一区二区久久久久久| 国产精品无码久久综合| 日韩精品久久久肉伦网站| 99久久无色码中文字幕人妻| 思思久久99热只有频精品66| 久久青青草原精品国产软件| 国产成人香蕉久久久久| 97精品伊人久久久大香线蕉 | 色综合久久88色综合天天 | 激情久久久久久久久久| 99久久夜色精品国产网站| 久久精品国产亚洲欧美| 久久香蕉一级毛片| AA级片免费看视频久久| 办公室久久精品| 久久久精品国产亚洲成人满18免费网站|