• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Google code jam 2008 R1A - Milkshakes

            Problem

            You own a milkshake shop. There are N different flavors that you can prepare, and each flavor can be prepared "malted" or "unmalted". So, you can make 2N different types of milkshakes.

            Each of your customers has a set of milkshake types that they like, and they will be satisfied if you have at least one of those types prepared. At most one of the types a customer likes will be a "malted" flavor.

            You want to make N batches of milkshakes, so that:

            • There is exactly one batch for each flavor of milkshake, and it is either malted or unmalted.
            • For each customer, you make at least one milkshake type that they like.
            • The minimum possible number of batches are malted.

            Find whether it is possible to satisfy all your customers given these constraints, and if it is, what milkshake types you should make.

            If it is possible to satisfy all your customers, there will be only one answer which minimizes the number of malted batches.

            Input

            • One line containing an integer C, the number of test cases in the input file.

            For each test case, there will be:

            • One line containing the integer N, the number of milkshake flavors.
            • One line containing the integer M, the number of customers.
            • M lines, one for each customer, each containing:
              • An integer T >= 1, the number of milkshake types the customer likes, followed by
              • T pairs of integers "X Y", one for each type the customer likes, where X is the milkshake flavor between 1 and N inclusive, and Y is either 0 to indicate unmalted, or 1 to indicated malted. Note that:
                • No pair will occur more than once for a single customer.
                • Each customer will have at least one flavor that they like (T >= 1).
                • Each customer will like at most one malted flavor. (At most one pair for each customer has Y = 1).
              All of these numbers are separated by single spaces.

            Output

            • C lines, one for each test case in the order they occur in the input file, each containing the string "Case #X: " where X is the number of the test case, starting from 1, followed by:
              • The string "IMPOSSIBLE", if the customers' preferences cannot be satisfied; OR
              • N space-separated integers, one for each flavor from 1 to N, which are 0 if the corresponding flavor should be prepared unmalted, and 1 if it should be malted.

            Limits

            Small dataset

            C = 100
            1 <= N <= 10
            1 <= M <= 100

            Large dataset

            C = 5
            1 <= N <= 2000
            1 <= M <= 2000

            The sum of all the T values for the customers in a test case will not exceed 3000.

            Sample


            Input
             

            Output
             
            2
            5
            3
            1 1 1
            2 1 0 2 0
            1 5 0
            1
            2
            1 1 0
            1 1 1
            Case #1: 1 0 0 0 0
            Case #2: IMPOSSIBLE

            In the first case, you must make flavor #1 malted, to satisfy the first customer. Every other flavor can be unmalted. The second customer is satisfied by getting flavor #2 unmalted, and the third customer is satisfied by getting flavor #5 unmalted.

            In the second case, there is only one flavor. One of your customers wants it malted and one wants it unmalted. You cannot satisfy them both.

            Analysis
            On the surface, this problem appears to require solving the classic problem "Satisfiability," the canonical example of an NP-complete problem. The customers represent clauses, the milkshake flavors represent variables, and malted and unmalted flavors represent whether the variable is negated.

            We are not evil enough to have chosen a problem that hard! The restriction that makes this problem easier is that the customers can only like at most one malted flavor (or equivalently, the clauses can only have at most one negated variable.)

            Using the following steps, we can quickly find whether a solution exists, and if so, what the solution is.

            1. Start with every flavor unmalted and consider the customers one by one.
            2. If there is an unsatisfied customer who only likes unmalted flavors, and all those flavors have been made malted, then no solution is possible.
            3. If there is an unsatisfied customer who has one favorite malted flavor, then we must make that flavor malted. We do this, then go back to step 2.
            4. If there are no unsatisfied customers, then we already have a valid solution and can leave the remaining flavors unmalted.

            Notice that whenever we made a flavor malted, we were forced to do so. Therefore, the solution we got must have the minimum possible number of malted flavors.

            With clever data structures, the above algorithm can be implemented to run in linear time.

            More information:

            The Satisfiability problem - Horn clauses


            Source Code
            #include <iostream>

            using namespace std;

            #define Rep(i,n) for (int i(0),_n(n); i<_n; ++i)

            struct Flavor{
                
            int X;
                
            char Y;
            }
            ;

            struct Customer{
                
            int T;
                Flavor
            * F;
                Customer() 
            {
                    F 
            = NULL;
                }

                
            ~Customer() {
                    
            if(NULL!=F) {
                        delete[] F;
                        F 
            = NULL;
                    }

                }

                
            void Init(int t) {
                    T 
            = t;
                    F 
            = new Flavor[T];
                }

                
            void SetFlavor(int i, int X, int Y) {
                    F[i].X 
            = X;
                    F[i].Y 
            = Y;
                }

                
            int GetFlavorX(int i) {
                    
            return F[i].X;
                }

                
            int GetFlavorY(int i) {
                    
            return F[i].Y;
                }

                
            bool IsSatisfied() {
                    
            return T==0;
                }

                
            void Satisfy() {
                    T
            =0;
                    
            if(NULL!=F) {
                        delete[] F;
                        F 
            = NULL;
                    }

                }

                
            bool IsSatisfing(int i, int *f) {
                    
            return f[F[i].X]==F[i].Y;
                }

                
            void SetMalted(int i, int *f) {
                    f[F[i].X] 
            = 1;
                }

            }
            ;

            int main()
            {
                
            int C;
                FILE 
            *fp = fopen("A.out""w");
                scanf(
            "%d"&C);
                Rep(c, C) 
            {
                    
            int N;
                    scanf(
            "%d"&N);
                    
            int* f = new int[N+1];
                    Rep(i ,N
            +1{
                        f[i]
            =0;
                    }

                    
            int M;
                    scanf(
            "%d"&M);
                    Customer
            * customer = new Customer[M];
                    Rep(m, M) 
            {
                        
            int T;
                        scanf(
            "%d"&T);
                        customer[m].Init(T);
                        Rep(t, T) 
            {
                            
            int X, Y;
                            scanf(
            "%d%d"&X,&Y);
                            customer[m].SetFlavor(t,X,Y);
                        }

                    }

                    
            bool findSolution = true;
                    
            int m = 0;
                    
            while(m<M) {
                        
            if(customer[m].IsSatisfied()) {
                            m
            ++;
                            
            continue;
                        }

                        
            bool malted = false;
                        
            int idx;
                        
            bool satisfied = false;
                        Rep(t, customer[m].T) 
            {
                            
            if(customer[m].GetFlavorY(t)==1{
                                malted 
            = true;
                                idx 
            = t;
                            }

                            
            if(customer[m].IsSatisfing(t,f)) {
                                satisfied 
            = true;
                            }

                        }

                        
            if(!satisfied) {
                            
            if(malted) {
                                customer[m].SetMalted(idx,f);
                                customer[m].Satisfy();
                                m
            =0;
                            }
             else {
                                findSolution 
            = false;
                                
            break;
                            }

                        }
             else {
                            m
            ++;
                        }

                    }

                    fprintf(fp,
            "Case #%d: ", c+1);
                    
            if(findSolution) {
                        Rep(i ,N) 
            {
                            fprintf(fp,
            "%d ", f[i+1]);
                        }

                        fprintf(fp,
            "\n");
                    }
             else {
                        fprintf(fp,
            "IMPOSSIBLE\n");
                    }

                    delete[] customer;
                    delete[] f;

                }

                fclose(fp);
            }

            posted on 2009-08-12 21:17 Chauncey 閱讀(409) 評論(0)  編輯 收藏 引用

            導航

            <2009年8月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            常用鏈接

            留言簿

            隨筆檔案(4)

            文章檔案(3)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久人人爽人人爽人人爽| 久久91精品国产91久久麻豆| 久久九九久精品国产免费直播| 久久久久国产精品| 久久噜噜久久久精品66| 精品无码久久久久国产动漫3d| 1000部精品久久久久久久久| 婷婷综合久久狠狠色99h| 久久久久国产| 亚洲国产精品无码久久久不卡| 亚洲国产精品一区二区久久| 亚洲另类欧美综合久久图片区| 亚洲综合精品香蕉久久网| 91性高湖久久久久| 亚洲国产另类久久久精品| 久久久久久久综合综合狠狠| 精品久久久久久亚洲精品 | 国内精品欧美久久精品| 国产成人精品综合久久久| 久久精品无码一区二区三区| 久久久久av无码免费网| 9191精品国产免费久久| 久久精品中文闷骚内射| 伊人色综合久久天天人手人婷| 国产精品熟女福利久久AV | 久久无码人妻精品一区二区三区 | 久久中文字幕人妻丝袜| 精品久久久久久无码人妻蜜桃| 潮喷大喷水系列无码久久精品| 精品一二三区久久aaa片| 一本久道久久综合狠狠躁AV| 99久久免费国产精品| 色噜噜狠狠先锋影音久久| 国产一区二区三区久久精品| 久久久久亚洲AV无码观看| 2019久久久高清456| 久久伊人精品一区二区三区| 精品多毛少妇人妻AV免费久久| 少妇人妻综合久久中文字幕| 青青草原综合久久大伊人导航| 色婷婷久久久SWAG精品|