• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Fourth Dimension Space

            枯葉北風寒,忽然年以殘,念往昔,語默心酸。二十光陰無一物,韶光賤,寐難安; 不畏形影單,道途阻且慢,哪曲折,如渡飛湍。斬浪劈波酬壯志,同把酒,共言歡! -如夢令

            POJ 1661 Help Jimmy 有點麻煩的動態規劃 O(n^2)

               蠻麻煩的一個題 但是說白了 也就是一個類似最長上升子序列的東西(可能跳轉的跨度大了些) 從底部往上逐層DP,每一層有兩個狀態 分別求之。小結一下吧 做了這么多動態規劃題 我發現 動態規劃的實質 居然是窮舉 ,囧啊,或者更確切的來說是 帶記憶化的窮舉!存儲加遞歸應該還是欠妥的,因為畢竟有了最優子結構以后 后效狀態便消除了,而且也并沒有揭示出DP解法的全局性(如果用更宏觀的視角來看待它),即它在求得答案的同時,也獲得了其他更多的信息,這些信息不是冗余(redundant 恩GRE高頻詞),形象的說 應該是在DP之路上,為答案作出貢獻的朋友,如果我們換一個問題,也許它們也就成了答案。
               對了,補充一下,我覺得這個題最重要的地方在于,當你找到了一塊板剛好能接住從左側下降的你時,你便不用再考慮更下層的板了,因為你不可能穿墻(板)!
            #include<iostream>
            #include
            <algorithm>
            #include
            <cstdio>
            using namespace std;
            #define INF 999999999

            struct node
            {
                
            int x1;
                
            int x2;
                
            int h;
                
            bool operator <(node other)
                
            {
                    
            return h>other.h;
                }

            }
            a[1005];
            int dp[1001][2];


            int n,x,y,mh;
            int main()
            {

                
            int t;
                
            int i,j,k;
                scanf(
            "%d",&t);
                
            for(k=1;k<=t;k++)
                
            {
                    scanf(
            "%d%d%d%d",&n,&x,&y,&mh);
                    
            for(i=1;i<=n;i++)
                    
            {
                        scanf(
            "%d%d%d",&a[i].x1,&a[i].x2,&a[i].h);
                        dp[i][
            0]=dp[i][1]=INF;
                    }

                    dp[n
            +1][0]=dp[n+1][1]=0;
                    a[n
            +1].x1=-INF;
                    a[n
            +1].x2=INF;
                    sort(a
            +1,a+1+n);
                    
            for(i=n;i>=1;i--)
                    
            {
                        
            bool l=false;
                        
            bool r=false;
                        
            for(j=i+1;j<=n+1;j++)
                        
            {
                            
            if(a[i].h-a[j].h>mh)
                                
            break;
                            
            if(!l&&a[i].x1>=a[j].x1&&a[i].x1<=a[j].x2)
                            
            {
                                
            if(j==n+1) dp[i][0]=0;
                                
            else 
                                
            {
                                    dp[i][
            0]=min(dp[i][0],dp[j][0]+a[i].x1-a[j].x1);
                                    dp[i][
            0]=min(dp[i][0],dp[j][1]+a[j].x2-a[i].x1);
                                    l
            =true;
                                }

                            }

                            
            if(!r&&a[i].x2>=a[j].x1&&a[i].x2<=a[j].x2)
                            
            {
                                
            if(j==n+1) dp[i][1]=0;
                                
            else 
                                
            {
                                    dp[i][
            1]=min(dp[i][1],dp[j][0]+a[i].x2-a[j].x1);
                                    dp[i][
            1]=min(dp[i][1],dp[j][1]+a[j].x2-a[i].x2);
                                    r
            =true;
                                }

                            }

                        }

                    }

                    
            int res=0;
                    
            for(i=1;i<=n+1;i++)
                    
            {

                        
            if(a[i].x1<=x&&x<=a[i].x2&&y>=a[i].h)
                        
            {
                            res
            =min(x-a[i].x1+dp[i][0],a[i].x2-x+dp[i][1]);
                            
            break;
                        }



                    }

                    res
            +=y;
                    printf(
            "%d\n",res);

                }

                
            return 0;
            }


            posted on 2010-03-23 23:50 abilitytao 閱讀(1305) 評論(2)  編輯 收藏 引用

            評論

            # re: POJ 1661 Help Jimmy 有點麻煩的動態規劃 O(n^2) 2010-03-24 00:11 schindlerlee

            剛瞄了眼pku web board
            abilitytao 2010-03-23 23:39:11 Problem 1661

            報告寫的真快。。。  回復  更多評論   

            # re: POJ 1661 Help Jimmy 有點麻煩的動態規劃 O(n^2) 2010-03-25 17:18 淘寶皇冠大全

            按時間的就暗示的啊  回復  更多評論   

            国产精品伦理久久久久久 | 国产精品亚洲综合专区片高清久久久| 久久一日本道色综合久久| 久久精品无码专区免费东京热| 国产精品久久久久影院嫩草| 热综合一本伊人久久精品 | 国产欧美久久一区二区| 亚洲精品美女久久久久99小说| 久久大香香蕉国产| 亚洲欧美国产日韩综合久久| 国产精品久久久久影院嫩草| 久久人做人爽一区二区三区 | 久久精品一区二区三区中文字幕| 无码伊人66久久大杳蕉网站谷歌| 婷婷久久综合九色综合98| 亚洲av成人无码久久精品| 久久九九久精品国产| 久久精品一区二区三区不卡| 久久亚洲AV成人无码国产| 香蕉久久久久久狠狠色| 精品无码久久久久久国产| 国内精品久久国产大陆| 欧美噜噜久久久XXX| 少妇无套内谢久久久久| 亚洲欧美成人久久综合中文网| 国内精品久久久久久麻豆| 久久不射电影网| 久久九九亚洲精品| 东京热TOKYO综合久久精品| 欧美噜噜久久久XXX| 久久久久国产精品熟女影院| 久久偷看各类wc女厕嘘嘘| 精品久久久久中文字幕日本| 久久亚洲精品人成综合网| 无码人妻久久一区二区三区免费| 中文字幕乱码人妻无码久久| 狼狼综合久久久久综合网| 97久久精品人妻人人搡人人玩| 成人资源影音先锋久久资源网| 2021久久国自产拍精品| 91精品国产高清久久久久久国产嫩草|