• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            尼克舅姑

            Nick9Gu

            貝葉斯分類器實驗

            使用的就是mitchell的那本ML中關于naive bayesian classifier講解用到的數據。20個郵件組的郵件,共約20000條記錄。

            主要是實踐了下naive bayesian classifier。做了兩個集合的實驗,包括全集和書中實踐的小集合(3個特定的郵件組集合)。
            全集上最后的準確率可以達到83.7%。而使用小集合對比書中的(89%-90.5%),可以達到91.3%的準確率。

            其中有一些需要注意的:
            1. 對低頻概率的光滑操作很重要。主要用于計算P(w|g)時在w頻次很低的情況下。
               如果沒有光滑,答案整個就被誤差毀了,直接準確率掉到20%以下。
               如果使用P(w|g)=(C(g,w)+1)/(C(g,all_w)+C(words_in_g))可以保證結果達到預期水平
               如果使用P(w|g)=(C(g,w)+1)/(C(g,all_w)+C(words))結果還更好些。這似乎和預期不是很符合。
            2. 對stopword的選取。
               使用idf作為選擇標準(不取log)。剛開始選定的覆蓋文章范圍在0.6才去除。后來發現一直到1/12都能保證單調遞增。效果不錯。
            3. 既然bayesian是逆概,還嘗試了正向概率計算求答案,也是使之相互獨立。準確率在75%左右。懷疑是模型本身并不是reasonable的。(就是比naive bayesian還不靠譜)

            從誤分類的數據來看,有些確實是無法很好分類。同時后續改進還有這么一些方法:
            1. 低頻詞的影響。
            2. 調整模型,使之更好去識別。這在看論文。看看是否可行。

            同時今天還看了一篇介紹bayesian的一些應用之處的文章。講的很廣泛,把很多知識都串一起了。很好!



            posted on 2009-10-08 00:30 Nick9Gu 閱讀(2062) 評論(4)  編輯 收藏 引用 所屬分類: {IR-NLP-Data Mining}

            評論

            # re: 貝葉斯分類器實驗 2009-10-08 15:34 SE7EN

            請問你是怎么對低頻概率進行光滑操作的?  回復  更多評論   

            # re: 貝葉斯分類器實驗 2009-10-08 17:48 Nick9Gu

            @SE7EN
            上面說的就是書上有一種+1方法。另外的方法應該就是可以通過對測試case分兩部分去驗證x/n的實際概率吧。  回復  更多評論   

            # re: 貝葉斯分類器實驗 2009-10-09 13:45 argmax

            +1法不是為了求得實際概率,而是為了使得概率有意義,因為naive bayesian中需要用到iid條件,如果其中一個概率為0,那么整個概率就沒有意義了,所以需要用到平滑方法。并且用最大似然估計的概率本身就存在偏差,因為畢竟用于統計的語料總是有限的。通常現在不用+1法來平滑,而是用dirichlet方法估計。但是本質上這幾種方法對于最后的結果都是大同小異。  回復  更多評論   

            # re: 貝葉斯分類器實驗 2009-10-10 09:37 Nick9Gu

            @argmax
            恩,我到覺得既然在低頻的時候相當于信息量就是確定的,在信息量確定的情況下無論用什么方法去估計都不會有太大差別。那么這時候用什么方法都只是一種因為不完全相信觀察到的數據而平滑的過程。  回復  更多評論   

            導航

            <2009年10月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            統計

            常用鏈接

            留言簿(1)

            隨筆分類

            隨筆檔案

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            評論排行榜

            国产精品久久久久a影院| 99国产欧美久久久精品蜜芽| 色综合久久综合网观看| 亚洲狠狠久久综合一区77777| 久久精品国产99久久久| 天天久久狠狠色综合| 久久久WWW成人| 久久男人Av资源网站无码软件| MM131亚洲国产美女久久| 色综合久久88色综合天天| 蜜桃麻豆www久久国产精品| 久久天天躁狠狠躁夜夜2020一| 久久综合给合久久狠狠狠97色 | 2021国产成人精品久久| 很黄很污的网站久久mimi色| 亚洲国产精品成人AV无码久久综合影院| 久久精品亚洲精品国产欧美| 人妻无码αv中文字幕久久琪琪布 人妻无码久久一区二区三区免费 人妻无码中文久久久久专区 | 亚洲日本久久久午夜精品| 亚洲伊人久久精品影院| 国产综合免费精品久久久| 亚洲女久久久噜噜噜熟女| 久久精品夜色噜噜亚洲A∨| 亚洲午夜久久久久久久久电影网| 国产精品美女久久久免费| 亚洲午夜久久久久久久久电影网| 青青青青久久精品国产h| 久久无码国产专区精品| 久久精品综合一区二区三区| 国内精品久久久久影院日本| 偷窥少妇久久久久久久久| 久久精品中文字幕第23页| 亚洲午夜久久久精品影院| 久久精品aⅴ无码中文字字幕重口| 色老头网站久久网| 伊人久久大香线蕉无码麻豆| 久久久久国产精品三级网| 成人国内精品久久久久影院VR| 97久久精品人妻人人搡人人玩| 伊人久久精品无码二区麻豆| 久久综合亚洲色HEZYO社区|