題目
有N種物品和一個(gè)容量為V的背包。第i種物品最多有n[i]件可用,每件費(fèi)用是c[i],價(jià)值是w[i]。求解將哪些物品裝入背包可使這些物品的費(fèi)用總和不超過背包容量,且價(jià)值總和最大。
基本算法
這題目和完全背包問題很類似。基本的方程只需將完全背包問題的方程略微一改即可,因?yàn)閷τ诘趇種物品有n[i]+1種策略:取0件,取1件……取n[i]件。令f[i][v]表示前i種物品恰放入一個(gè)容量為v的背包的最大權(quán)值,則有狀態(tài)轉(zhuǎn)移方程:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}
復(fù)雜度是O(V*Σn[i])。
轉(zhuǎn)化為01背包問題
另一種好想好寫的基本方法是轉(zhuǎn)化為01背包求解:把第i種物品換成n[i]件01背包中的物品,則得到了物品數(shù)為Σn[i]的01背包問題,直接求解,復(fù)雜度仍然是O(V*Σn[i])。
但是我們期望將它轉(zhuǎn)化為01背包問題之后能夠像完全背包一樣降低復(fù)雜度。仍然考慮二進(jìn)制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價(jià)于取若干件代換以后的物品。另外,取超過n[i]件的策略必不能出現(xiàn)。
方法是:將第i種物品分成若干件物品,其中每件物品有一個(gè)系數(shù),這件物品的費(fèi)用和價(jià)值均是原來的費(fèi)用和價(jià)值乘以這個(gè)系數(shù)。使這些系數(shù)分別為1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數(shù)。例如,如果n[i]為13,就將這種物品分成系數(shù)分別為1,2,4,6的四件物品。
分成的這幾件物品的系數(shù)和為n[i],表明不可能取多于n[i]件的第i種物品。另外這種方法也能保證對于0..n[i]間的每一個(gè)整數(shù),均可以用若干個(gè)系數(shù)的和表示,這個(gè)證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,并不難,希望你自己思考嘗試一下。
這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉(zhuǎn)化為了復(fù)雜度為<math>O(V*Σlog n[i])的01背包問題,是很大的改進(jìn)。
下面給出O(log amount)時(shí)間處理一件多重背包中物品的過程,其中amount表示物品的數(shù)量:
procedure MultiplePack(cost,weight,amount)
if cost*amount>=V
CompletePack(cost,weight)
return
integer k=1
while k<amount
ZeroOnePack(k*cost,k*weight)
amount=amount-k
k=k*2
ZeroOnePack(amount*cost,amount*weight)
希望你仔細(xì)體會(huì)這個(gè)偽代碼,如果不太理解的話,不妨翻譯成程序代碼以后,單步執(zhí)行幾次,或者頭腦加紙筆模擬一下,也許就會(huì)慢慢理解了。
O(VN)的算法
多重背包問題同樣有O(VN)的算法。這個(gè)算法基于基本算法的狀態(tài)轉(zhuǎn)移方程,但應(yīng)用單調(diào)隊(duì)列的方法使每個(gè)狀態(tài)的值可以以均攤O(1)的時(shí)間求解。由于用單調(diào)隊(duì)列優(yōu)化的DP已超出了NOIP的范圍,故本文不再展開講解。我最初了解到這個(gè)方法是在樓天成的“男人八題”幻燈片上。
小結(jié)
這里我們看到了將一個(gè)算法的復(fù)雜度由O(V*Σn[i])改進(jìn)到O(V*Σlog n[i])的過程,還知道了存在應(yīng)用超出NOIP范圍的知識(shí)的O(VN)算法。希望你特別注意“拆分物品”的思想和方法,自己證明一下它的正確性,并將完整的程序代碼寫出來。
posted on 2015-02-18 20:33
JulyRina 閱讀(381)
評論(0) 編輯 收藏 引用 所屬分類:
算法專題