• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            卡爾曼濾波 – Kalman Filtering

            1.    什么是卡爾曼濾波器
            (What is the Kalman Filter?)

            在學(xué)習(xí)卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數(shù)等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現(xiàn)代人!

            卡爾曼全名Rudolf Emil Kalman,匈牙利數(shù)學(xué)家,1930年出生于匈牙利首都布達(dá)佩斯。1953,1954年于麻省理工學(xué)院分別獲得電機(jī)工程學(xué)士及碩士學(xué)位。1957年于哥倫比亞大學(xué)獲得博士學(xué)位。我們現(xiàn)在要學(xué)習(xí)的卡爾曼濾波器,正是源于他的博士論文和1960年發(fā)表的論文《A New Approach to Linear Filtering and Prediction Problems》(線性濾波與預(yù)測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載:
            http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf 。

            簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優(yōu)化自回歸數(shù)據(jù)處理算法)”。對于解決很大部分的問題,他是最優(yōu),效率最高甚至是最有用的。他的廣泛應(yīng)用已經(jīng)超過30年,包括機(jī)器人導(dǎo)航,控制,傳感器數(shù)據(jù)融合甚至在軍事方面的雷達(dá)
            系統(tǒng)以及導(dǎo)彈追蹤等等。近年來更被應(yīng)用于計(jì)算機(jī)圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。

            2.卡爾曼濾波器的介紹
            (Introduction to the Kalman Filter)

            為了可以更加容易的理解卡爾曼濾波器,這里會應(yīng)用形象的描述方法來講解,而不是像大多數(shù)參考書那樣羅列一大堆的數(shù)學(xué)公式和數(shù)學(xué)符號。但是,他的5條公式是其核心內(nèi)容。結(jié)合現(xiàn)代的計(jì)算機(jī),其實(shí)卡爾曼的程序相當(dāng)?shù)暮唵危灰憷斫饬怂哪?條公式。

            在介紹他的5條公式之前,先讓我們來根據(jù)下面的例子一步一步的探索。

            假設(shè)我們要研究的對象是一個房間的溫度。根據(jù)你的經(jīng)驗(yàn)判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現(xiàn)在這一分鐘的溫度(假設(shè)我們用一分鐘來做時間單位)。假設(shè)你對你的經(jīng)驗(yàn)不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時間是沒有關(guān)系的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間里放一個溫度計(jì),但是這個溫度計(jì)也不準(zhǔn)確的,測量值會比實(shí)際值偏差。我們也把這些偏差看成是高斯白噪聲。

            好了,現(xiàn)在對于某一分鐘我們有兩個有關(guān)于該房間的溫度值:你根據(jù)經(jīng)驗(yàn)的預(yù)測值(
            系統(tǒng)的預(yù)測值)和溫度計(jì)的值(測量值)。下面我們要用這兩個值結(jié)合他們各自的噪聲來估算出房間的實(shí)際溫度值。

            假如我們要估算k時刻的是實(shí)際溫度值。首先你要根據(jù)k-1時刻的溫度值,來預(yù)測k時刻的溫度。因?yàn)槟阆嘈艤囟仁呛愣ǖ模阅銜玫絢時刻的溫度預(yù)測值是跟k-1時刻一樣的,假設(shè)是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優(yōu)溫度值的偏差是3,你對自己預(yù)測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計(jì)那里得到了k時刻的溫度值,假設(shè)是25度,同時該值的偏差是4度。

            由于我們用于估算k時刻的實(shí)際溫度有兩個溫度值,分別是23度和25度。究竟實(shí)際溫度是多少呢?相信自己還是相信溫度計(jì)呢?究竟相信誰多一點(diǎn),我們可以用他們的covariance來判斷。因?yàn)镵g^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時刻的實(shí)際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因?yàn)闇囟扔?jì)的covariance比較小(比較相信溫度計(jì)),所以估算出的最優(yōu)溫度值偏向溫度計(jì)的值。

            現(xiàn)在我們已經(jīng)得到k時刻的最優(yōu)溫度值了,下一步就是要進(jìn)入k+1時刻,進(jìn)行新的最優(yōu)估算。到現(xiàn)在為止,好像還沒看到什么自回歸的東西出現(xiàn)。對了,在進(jìn)入k+1時刻之前,我們還要算出k時刻那個最優(yōu)值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預(yù)測的那個23度溫度值的偏差,得出的2.35就是進(jìn)入k+1時刻以后k時刻估算出的最優(yōu)溫度值的偏差(對應(yīng)于上面的3)。

            就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優(yōu)的溫度值。他運(yùn)行的很快,而且它只保留了上一時刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!

            下面就要言歸正傳,討論真正工程
            系統(tǒng)上的卡爾曼。

            3.    卡爾曼濾波器算法
            (The Kalman Filter Algorithm)

            在這一部分,我們就來描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨即變量(Random Variable),高斯或正態(tài)分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細(xì)證明,這里不能一一描述。

            首先,我們先要引入一個離散控制過程的系統(tǒng)。該
            系統(tǒng)可用一個線性隨機(jī)微分方程(Linear Stochastic Difference equation)來描述:
            X(k)=A X(k-1)+B U(k)+W(k)
            再加上
            系統(tǒng)的測量值:
            Z(k)=H X(k)+V(k)
            上兩式子中,X(k)是k時刻的
            系統(tǒng)狀態(tài),U(k)是k時刻對系統(tǒng)的控制量。A和B是系統(tǒng)參數(shù),對于多模型系統(tǒng),他們?yōu)榫仃嚒(k)是k時刻的測量值,H是測量系統(tǒng)的參數(shù),對于多測量系統(tǒng),H為矩陣。W(k)和V(k)分別表示過程和測量的噪聲。他們被假設(shè)成高斯白噪聲(White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設(shè)他們不隨系統(tǒng)狀態(tài)變化而變化)。

            對于滿足上面的條件(線性隨機(jī)微分
            系統(tǒng)過程和測量都是高斯白噪聲),卡爾曼濾波器是最優(yōu)的信息處理器。下面我們來用他們結(jié)合他們的covariances 來估算系統(tǒng)的最優(yōu)化輸出(類似上一節(jié)那個溫度的例子)。

            首先我們要利用系統(tǒng)的過程模型,來預(yù)測下一狀態(tài)的系統(tǒng)。假設(shè)現(xiàn)在的系統(tǒng)狀態(tài)是k,根據(jù)系統(tǒng)的模型,可以基于系統(tǒng)的上一狀態(tài)而預(yù)測出現(xiàn)在狀態(tài):
            X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
            式(1)中,X(k|k-1)是利用上一狀態(tài)預(yù)測的結(jié)果,X(k-1|k-1)是上一狀態(tài)最優(yōu)的結(jié)果,U(k)為現(xiàn)在狀態(tài)的控制量,如果沒有控制量,它可以為0。

            到現(xiàn)在為止,我們的
            系統(tǒng)結(jié)果已經(jīng)更新了,可是,對應(yīng)于X(k|k-1)的covariance還沒更新。我們用P表示covariance:
            P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
            式(2)中,P(k|k-1)是X(k|k-1)對應(yīng)的covariance,P(k-1|k-1)是X(k-1|k-1)對應(yīng)的covariance,A’表示A的轉(zhuǎn)置矩陣,Q是
            系統(tǒng)過程的covariance。式子1,2就是卡爾曼濾波器5個公式當(dāng)中的前兩個,也就是對系統(tǒng)的預(yù)測。

            現(xiàn)在我們有了現(xiàn)在狀態(tài)的預(yù)測結(jié)果,然后我們再收集現(xiàn)在狀態(tài)的測量值。結(jié)合預(yù)測值和測量值,我們可以得到現(xiàn)在狀態(tài)(k)的最優(yōu)化估算值X(k|k):
            X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
            其中Kg為卡爾曼增益(Kalman Gain):
            Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

            到現(xiàn)在為止,我們已經(jīng)得到了k狀態(tài)下最優(yōu)的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運(yùn)行下去直到
            系統(tǒng)過程結(jié)束,我們還要更新k狀態(tài)下X(k|k)的covariance:
            P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
            其中I 為1的矩陣,對于單模型單測量,I=1。當(dāng)
            系統(tǒng)進(jìn)入k+1狀態(tài)時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運(yùn)算下去。

            卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據(jù)這5個公式,可以很容易的實(shí)現(xiàn)計(jì)算機(jī)的程序。

            下面,我會用程序舉一個實(shí)際運(yùn)行的例子。。。
            4.    簡單例子
            (A Simple Example)

            這里我們結(jié)合第二第三節(jié),舉一個非常簡單的例子來說明卡爾曼濾波器的工作過程。所舉的例子是進(jìn)一步描述第二節(jié)的例子,而且還會配以程序模擬結(jié)果。

            根據(jù)第二節(jié)的描述,把房間看成一個系統(tǒng),然后對這個
            系統(tǒng)建模。當(dāng)然,我們見的模型不需要非常地精確。我們所知道的這個房間的溫度是跟前一時刻的溫度相同的,所以A=1。沒有控制量,所以U(k)=0。因此得出:
            X(k|k-1)=X(k-1|k-1) ……….. (6)
            式子(2)可以改成:
            P(k|k-1)=P(k-1|k-1) +Q ……… (7)

            因?yàn)闇y量的值是溫度計(jì)的,跟溫度直接對應(yīng),所以H=1。式子3,4,5可以改成以下:
            X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
            Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
            P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

            現(xiàn)在我們模擬一組測量值作為輸入。假設(shè)房間的真實(shí)溫度為25度,我模擬了200個測量值,這些測量值的平均值為25度,但是加入了標(biāo)準(zhǔn)偏差為幾度的高斯白噪聲(在圖中為藍(lán)線)。

            為了令卡爾曼濾波器開始工作,我們需要告訴卡爾曼兩個零時刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個就可以了,因?yàn)殡S著卡爾曼的工作,X會逐漸的收斂。但是對于P,一般不要取0,因?yàn)檫@樣可能會令卡爾曼完全相信你給定的X(0|0)是
            系統(tǒng)最優(yōu)的,從而使算法不能收斂。我選了X(0|0)=1度,P(0|0)=10。

            系統(tǒng)的真實(shí)溫度為25度,圖中用黑線表示。圖中紅線是卡爾曼濾波器輸出的最優(yōu)化結(jié)果(該結(jié)果在算法中設(shè)置了Q=1e-6,R=1e-1)。

            作者:jearome

            posted on 2008-04-01 14:24 Amigo 閱讀(4094) 評論(4)  編輯 收藏 引用

            評論

            # re: 卡爾曼濾波 – Kalman Filtering 2008-06-23 16:25 JSS

            怎么看不到圖  回復(fù)  更多評論   

            # re: 卡爾曼濾波 – Kalman Filtering 2009-05-24 08:03 PeterPan

            這篇文章是我2004年11月在vehelp上面發(fā)表的原創(chuàng)。雖然vchelp現(xiàn)在已經(jīng)關(guān)閉了。但是你這樣貼出來是侵權(quán)了。請站長刪除吧。我會在我的網(wǎng)站上發(fā)表完整的文章。  回復(fù)  更多評論   

            # re: 卡爾曼濾波 – Kalman Filtering 2009-05-24 08:12 PeterPan

            有什么問題到qq群19905276找我。

            peterpan  回復(fù)  更多評論   

            # re: 卡爾曼濾波 – Kalman Filtering 2013-03-22 11:06 zya

            你好,請問高斯白噪聲的偏差 和 covariance 是同一量嗎?如果不是,請問他們是什么關(guān)系?
              回復(fù)  更多評論   


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2009年3月>
            22232425262728
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(4)

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            評論排行榜

            99久久无色码中文字幕| 国产ww久久久久久久久久| 日韩精品久久久久久久电影| 亚洲伊人久久成综合人影院 | 人妻无码中文久久久久专区| 亚洲国产精品久久久久久| 深夜久久AAAAA级毛片免费看| 久久久无码精品亚洲日韩按摩 | 中文成人无码精品久久久不卡| 亚洲AV无码久久精品狠狠爱浪潮| 国产精品无码久久综合| 午夜精品久久久久久影视777| 久久99久久99精品免视看动漫| 婷婷久久综合九色综合九七| 国产高潮国产高潮久久久| 亚洲精品WWW久久久久久| 久久久噜噜噜久久熟女AA片| 香蕉久久久久久狠狠色| 久久综合久久综合久久| 久久www免费人成看片| 久久免费观看视频| 91久久精品无码一区二区毛片| 人妻少妇久久中文字幕一区二区| 蜜臀久久99精品久久久久久| 国内精品久久久久国产盗摄| 国产精品久久久久久久久鸭| 久久精品国产精品亚洲精品| 亚洲色欲久久久久综合网| 久久精品亚洲精品国产欧美| 久久免费视频观看| 久久综合综合久久97色| 99久久精品国产免看国产一区| 欧美牲交A欧牲交aⅴ久久| 久久久无码精品亚洲日韩京东传媒| 久久人妻少妇嫩草AV蜜桃| 久久久久一本毛久久久| 久久亚洲国产精品五月天婷| 久久综合精品国产一区二区三区| 久久久久亚洲av毛片大| 2021国产精品午夜久久| 久久精品国产亚洲AV香蕉|