• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            MFC與namespace的沖突問題

            把代碼從QT移植到MFC的時候,這個文件vecmat.h,出現(xiàn)了如下錯誤:
            error C2143: syntax error : missing ',' before ')'
            error C2143: syntax error : missing ';' before '}'
            error C2059: syntax error : ')'
            fatal error C1004: unexpected end-of-file found
            等等。
            vecmat.h源代碼如下:

            #ifndef  VECMAT_H
            # define VECMAT_H

            # include <cmath>
            # include <vector>
            # include <iostream>

             

            namespace vecmat {

             namespace internal {

              template <bool B>
              struct is_false {};

              template <>
              struct is_false<false> {
               static inline void ensure() {}
              };

             } // end of namespace internal

             //
             //  Vector class
             //    - T: value type
             //    - N: dimension
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T, unsigned N>
             class Vector
             {
             public:

              typedef T value_type;

              // constructors

              inline Vector() {
               for (unsigned i = 0; i < N; i++)
                _coord[i] = 0;
              }

              ~Vector() {
               internal::is_false<(N == 0)>::ensure();
              }

              template <class U>
              explicit inline Vector(const U tab[N]) {
               for (unsigned i = 0; i < N; i++)
                _coord[i] = (T)tab[i];
              }

              template <class U>
              explicit inline Vector(const std::vector<U>& tab) {
               for (unsigned i = 0; i < N; i++)
                _coord[i] = (T)tab[i];
              }

              template <class U>
              explicit inline Vector(const Vector<U, N>& v) {
               for (unsigned i = 0; i < N; i++)
                _coord[i] = (T)v[i];
              }

              // accessors

              inline value_type  operator[](const unsigned i) const {
               return _coord[i];
              }

              inline value_type& operator[](const unsigned i) {
               return _coord[i];
              }

              static inline unsigned dim() {
               return N;
              }

              // various useful methods

              inline value_type norm() const {
               return (T)sqrt(squareNorm());
              }

              inline value_type squareNorm() const {
               return (*this) * (*this);
              }

              inline Vector<T, N>& normalize() {
               value_type n = norm();
               for (unsigned i = 0; i < N; i++)
                _coord[i] /= n;
               return *this;
              }

              inline Vector<T, N>& normalizeSafe() {
               value_type n = norm();
               if (n)
                for (unsigned i=0; i < N; i++)
                 _coord[i] /= n;
               return *this;
              }

              inline Vector<T, N>& min(const Vector<T, N>& v) {
               for (unsigned i=0; i < N; i++)
                if (_coord[i]  > v._coord[i])
                 _coord[i] = v._coord[i];
               return *this;
              }

              inline Vector<T, N>& max(const Vector<T, N>& v) {
               for (unsigned i=0; i < N; i++)
                if (_coord[i]  < v._coord[i])
                 _coord[i] = v._coord[i];
               return *this;
              }

              inline const value_type* address() const {
               return _coord;
              }

              // classical operators

              template <class U>
              inline Vector<T, N>& operator=(const Vector<U, N>& v) {
               if (this != &v)
                for (unsigned i = 0; i < N; i++)
                 _coord[i] = (T)v[i];
               return *this;
              }

              template <class U>
              inline Vector<T, N>& operator+=(const Vector<U, N>& v) {
               for (unsigned i = 0 ; i < N; i++)
                _coord[i] += (T)v[i];
               return *this;
              }

              template <class U>
              inline Vector<T, N>& operator-=(const Vector<U, N>& v) {
               for (unsigned i = 0 ; i < N; i++)
                _coord[i] -= (T)v[i];
               return *this;
              }

              template <class U>
              inline Vector<T, N>& operator*=(const U r) {
               for (unsigned i = 0 ; i < N; i++)
                _coord[i] *= r;
               return *this;
              }

              template <class U>
              inline Vector<T, N>& operator/=(const U r) {
               if (r)
                for (unsigned i = 0 ; i < N; i++)
                 _coord[i] /= r;
               return *this;
              }


              inline bool operator==(const Vector<T, N>& v) const {
               for(unsigned i = 0; i < N; i++)
                if (_coord[i] != v[i])
                 return false;
               return true;
              }

              inline bool operator!=(const Vector<T, N>& v) const {
               for(unsigned i = 0; i < N; i++)
                if (_coord[i] != v[i])
                 return true;
               return false;
              }

              inline bool operator<(const Vector<T, N>& v) const {
               for (unsigned i = 0; i<N; i++) {
                if (_coord[i] < v[i])
                 return true;
                if (_coord[i] > v[i])
                 return false;
                if (_coord[i] == v[i])
                 continue;
               }
               return false; 
              }

              inline bool operator>(const Vector<T, N>& v) const {
               for (unsigned i=0; i<N; i++) {
                if(_coord[i] > v[i])
                 return true;
                if(_coord[i] < v[i])
                 return false;
                if(_coord[i] == v[i])
                 continue;
               }
               return false; 
              }

             protected:

              value_type _coord[N];
              enum {
               _dim = N,
              };
             };


             //
             //  Vec2 class (2D Vector)
             //    - T: value type
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T>
             class Vec2 : public Vector<T, 2>
             {
             public:

              typedef typename Vector<T, 2>::value_type value_type;

              inline Vec2() : Vector<T, 2>() {}

              template <class U>
              explicit inline Vec2(const U tab[2]) : Vector<T, 2>(tab) {}

              template <class U>
              explicit inline Vec2(const std::vector<U>& tab) : Vector<T, 2>(tab) {}

              template <class U>
              inline Vec2(const Vector<U, 2>& v) : Vector<T, 2>(v) {}

              inline Vec2(const value_type x,
               const value_type y = 0) : Vector<T, 2>() {
                this->_coord[0] = (T)x;
                this->_coord[1] = (T)y;
              }

              inline value_type x() const {
               return this->_coord[0];
              }

              inline value_type& x() {
               return this->_coord[0];
              }

              inline value_type y() const {
               return this->_coord[1];
              }

              inline value_type& y() {
               return this->_coord[1];
              }
             };


             //
             //  HVec3 class (3D Vector in homogeneous coordinates)
             //    - T: value type
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T>
             class HVec3 : public Vector<T, 4>
             {
             public:

              typedef typename Vector<T, 4>::value_type value_type;

              inline HVec3() : Vector<T, 4>() {}

              template <class U>
              explicit inline HVec3(const U tab[4]) : Vector<T, 4>(tab) {}

              template <class U>
              explicit inline HVec3(const std::vector<U>& tab) : Vector<T, 4>(tab) {}

              template<class U>
              inline HVec3(const Vector<U, 4>& v) : Vector<T, 4>(v) {}

              inline HVec3(const value_type sx,
               const value_type sy = 0,
               const value_type sz = 0,
               const value_type s = 1) {
                this->_coord[0] = sx;
                this->_coord[1] = sy;
                this->_coord[2] = sz;
                this->_coord[3] = s;
              }

              template <class U>
              inline HVec3(const Vector<U, 3>& sv) {
               this->_coord[0] = (T)sv[0];
               this->_coord[1] = (T)sv[1];
               this->_coord[2] = (T)sv[2];
               this->_coord[3] = (T)1;
              }


              template <class U>
              inline HVec3(const Vector<U, 3>& sv,
               const U) {
                this->_coord[0] = (T)sv[0];
                this->_coord[1] = (T)sv[1];
                this->_coord[2] = (T)sv[2];
                this->_coord[3] = (T)s;
              }

              inline value_type sx() const {
               return this->_coord[0];
              }

              inline value_type& sx() {
               return this->_coord[0];
              }

              inline value_type sy() const {
               return this->_coord[1];
              }

              inline value_type& sy() {
               return this->_coord[1];
              }

              inline value_type sz() const {
               return this->_coord[2];
              }

              inline value_type& sz() {
               return this->_coord[2];
              }

              inline value_type s() const {
               return this->_coord[3];
              }

              inline value_type& s() {
               return this->_coord[3];
              }

              // Acces to non-homogeneous coordinates in 3D

              inline value_type x() const {
               return this->_coord[0] / this->_coord[3];
              }

              inline value_type y() const {
               return this->_coord[1] / this->_coord[3];
              }

              inline value_type z() const {
               return this->_coord[2] / this->_coord[3];
              }
             };


             //
             //  Vec3 class (3D Vector)
             //    - T: value type
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T>
             class Vec3 : public Vector<T, 3>
             {
             public:

              typedef typename Vector<T, 3>::value_type value_type;

              inline Vec3() : Vector<T, 3>() {}

              template <class U>
              explicit inline Vec3(const U tab[3]) : Vector<T, 3>(tab) {}

              template <class U>
              explicit inline Vec3(const std::vector<U>& tab) : Vector<T, 3>(tab) {}

              template<class U>
              inline Vec3(const Vector<U, 3>& v) : Vector<T, 3>(v) {}

              template<class U>
              inline Vec3(const HVec3<U>& v) {
               this->_coord[0] = (T)v.x();
               this->_coord[1] = (T)v.y();
               this->_coord[2] = (T)v.z();
              }

              inline Vec3(const value_type x,
               const value_type y = 0,
               const value_type z = 0) : Vector<T, 3>() {
                this->_coord[0] = x;
                this->_coord[1] = y;
                this->_coord[2] = z;
              }

              inline value_type x() const {
               return this->_coord[0];
              }

              inline value_type& x() {
               return this->_coord[0];
              }

              inline value_type y() const {
               return this->_coord[1];
              }

              inline value_type& y() {
               return this->_coord[1];
              }

              inline value_type z() const {
               return this->_coord[2];
              }

              inline value_type& z() {
               return this->_coord[2];
              }
             };


             //
             //  Matrix class
             //    - T: value type
             //    - M: rows
             //    - N: cols
             //
             /////////////////////////////////////////////////////////////////////////////

             // Dirty, but icc under Windows needs this
            # define _SIZE (M * N)

             template <class T, unsigned M, unsigned N>
             class Matrix
             {
             public:

              typedef T value_type;

              inline Matrix() {
               for (unsigned i = 0; i < _SIZE; i++)
                this->_coord[i] = 0;
              }

              ~Matrix() {
               internal::is_false<(M == 0)>::ensure();
               internal::is_false<(N == 0)>::ensure();
              }

              template <class U>
              explicit inline Matrix(const U tab[M][N]) {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 this->_coord[i * N + j] = tab[i][j];
              }

              template <class U>
              explicit inline Matrix(const U tab[_SIZE]) {
               for (unsigned i = 0; i < _SIZE; i++)
                this->_coord[i] = tab[i];
              }

              template <class U>
              explicit inline Matrix(const std::vector<U>& tab) {
               for (unsigned i = 0; i < _SIZE; i++)
                this->_coord[i] = tab[i];
              }

              template <class U>
              inline Matrix(const Matrix<U, M, N>& m) {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 this->_coord[i * N + j] = (T)m(i, j);
              }

              inline value_type operator()(const unsigned i, const unsigned j) const {
               return this->_coord[i * N + j];
              }

              inline value_type& operator()(const unsigned i, const unsigned j) {
               return this->_coord[i * N + j];
              }

              static inline unsigned rows() {
               return M;
              }

              static inline unsigned cols() {
               return N;
              }

              inline Matrix<T, M, N> transpose() const {
               Matrix<T, N, M> res;
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 res(j,i) = this->_coord[i * N + j];
               return res;
              }

              inline void getArray(value_type res[M][N]) const {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 res[i][j] = this->_coord[i * N + j];
              }

              inline void getArray(value_type res[_SIZE]) const {
               for (unsigned i = 0; i < _SIZE; i++)
                res[i] = this->_coord[i];
              }

              inline const value_type* address() const {
               return this->_coord;
              }

              template <class U>
              inline Matrix<T, M, N>& operator=(const Matrix<U, M, N>& m) {
               if (this != &m)
                for (unsigned i = 0; i < M; i++)
                 for (unsigned j = 0; j < N; j++)
                  this->_coord[i * N + j] = (T)m(i, j);
               return *this;
              }

              template <class U>
              inline Matrix<T, M, N>& operator+=(const Matrix<U, M, N>& m) {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 this->_coord[i * N + j] += (T)m(i, j);
               return *this;
              }

              template <class U>
              inline Matrix<T, M, N>& operator-=(const Matrix<U, M, N>& m) {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 this->_coord[i * N + j] -= (T)m(i, j);
               return *this;
              }

              template <class U>
              inline Matrix<T, M, N>& operator*=(const U lambda) {
               for (unsigned i = 0; i < M; i++)
                for (unsigned j = 0; j < N; j++)
                 this->_coord[i * N + j] *= lambda;
               return *this;
              }

              template <class U>
              inline Matrix<T, M, N>& operator/=(const U lambda) {
               if (lambda)
                for (unsigned i = 0; i < M; i++)
                 for (unsigned j = 0; j < N; j++)
                  this->_coord[i * N + j] /= lambda;
               return *this;
              }

             protected:

              value_type _coord[_SIZE];
             };


             //
             //  SquareMatrix class
             //    - T: value type
             //    - N: rows & cols
             //
             /////////////////////////////////////////////////////////////////////////////

             // Dirty, but icc under Windows needs this
            # define __SIZE (N * N)

             template <class T, unsigned N>
             class SquareMatrix : public Matrix<T, N, N>
             {
             public:

              typedef T value_type;

              inline SquareMatrix() : Matrix<T, N, N>() {}

              template <class U>
              explicit inline SquareMatrix(const U tab[__SIZE]) : Matrix<T, N, N>(tab) {}

              template <class U>
              explicit inline SquareMatrix(const std::vector<U>& tab) : Matrix<T, N, N>(tab) {}

              template <class U>
              inline SquareMatrix(const Matrix<U, N, N>& m) : Matrix<T, N, N>(m) {}

              static inline SquareMatrix<T, N> identity() {
               SquareMatrix<T, N> res;
               for (unsigned i = 0; i < N; i++)
                res(i, i) = 1;
               return res;
              }
             };


             //
             // Vector external functions
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T, unsigned N>
             inline Vector<T, N> operator+(const Vector<T, N>& v1,
              const Vector<T, N>& v2) {
               Vector<T, N> res(v1);
               res += v2;
               return res;
             }

             template <class T, unsigned N>
             inline Vector<T, N> operator-(const Vector<T, N>& v1,
              const Vector<T, N>& v2) {
               Vector<T, N> res(v1);
               res -= v2;
               return res;
             }
             template <class T, unsigned N>
             inline Vector<T, N> operator*(const Vector<T, N>& v,
              const typename Vector<T, N>::value_type r) {
               Vector<T, N> res(v);
               res *= r;
               return res;
             }

             template <class T, unsigned N>
             inline Vector<T, N> operator*(const typename Vector<T, N>::value_type r,
              const Vector<T, N>& v) {
               Vector<T, N> res(v);
               res *= r;
               return res;
             }

             template <class T, unsigned N>
             inline Vector<T, N> operator/(const Vector<T, N>& v,
              const typename Vector<T, N>::value_type r) {
               Vector<T, N> res(v);
               if (r)
                res /= r;
               return res;
             }

             // dot product
             template <class T, unsigned N>
             inline typename Vector<T, N>::value_type operator*(const Vector<T, N>& v1,
              const Vector<T, N>& v2) {
               typename Vector<T, N>::value_type sum = 0;
               for (unsigned i = 0; i < N; i++)
                sum += v1[i] * v2[i];
               return sum;
             }

             // cross product for 3D Vectors
             template <typename T>
             inline Vec3<T> operator^(const Vector<T, 3>& v1,
              const Vector<T, 3>& v2) {
               Vec3<T> res(v1[1] * v2[2] - v1[2] * v2[1],
                v1[2] * v2[0] - v1[0] * v2[2],
                v1[0] * v2[1] - v1[1] * v2[0]);
               return res;
             }

             // stream operator
             template <class T, unsigned N>
             inline std::ostream& operator<<(std::ostream& s,
              const Vector<T, N>& v) {
               unsigned i;
               s << "[";
               for (i = 0; i < N - 1; i++)
                s << v[i] << ", ";
               s << v[i] << "]";
               return s;
             }


             //
             // Matrix external functions
             //
             /////////////////////////////////////////////////////////////////////////////

             template <class T, unsigned M, unsigned N>
             inline Matrix<T, M, N>
              operator+(const Matrix<T, M, N>& m1,
              const Matrix<T, M, N>& m2) {
               Matrix<T, M, N> res(m1);
               res += m2;
               return res;
             }

             template <class T, unsigned M, unsigned N>
             inline Matrix<T, M, N>
              operator-(const Matrix<T, M, N>& m1,
              const Matrix<T, M, N>& m2) {
               Matrix<T, M, N> res(m1);
               res -= m2;
               return res;
             }

             template <class T, unsigned M, unsigned N>
             inline Matrix<T, M, N>
              operator*(const Matrix<T, M, N>& m1,
              const typename Matrix<T, M, N>::value_type lambda) {
               Matrix<T, M, N> res(m1);
               res *= lambda;
               return res;
             }

             template <class T, unsigned M, unsigned N>
             inline Matrix<T, M, N>
              operator*(const typename Matrix<T, M, N>::value_type lambda,
              const Matrix<T, M, N>& m1) {
               Matrix<T, M, N> res(m1);
               res *= lambda;
               return res;
             }

             template <class T, unsigned M, unsigned N>
             inline Matrix<T, M, N>
              operator/(const Matrix<T, M, N>& m1,
              const typename Matrix<T, M, N>::value_type lambda) {
               Matrix<T, M, N> res(m1);
               res /= lambda;
               return res;
             }

             template <class T, unsigned M, unsigned N, unsigned P>
             inline Matrix<T, M, P>
              operator*(const Matrix<T, M, N>& m1,
              const Matrix<T, N, P>& m2) {
               unsigned i, j, k;
               Matrix<T, M, P> res;
               typename  Matrix<T, N, P>::value_type scale;

               for (j = 0; j < P; j++) {
                for (k = 0; k < N; k++) {
                 scale = m2(k, j);
                 for (i = 0; i < N; i++)
                  res(i, j) += m1(i, k) * scale;
                }
               }
               return res;
             }

             template <class T, unsigned M, unsigned N>
             inline Vector<T, M>
              operator*(const Matrix<T, M, N>& m,
              const Vector<T, N>& v) {

               Vector<T, M> res;
               typename Matrix<T, M, N>::value_type scale;

               for (unsigned j = 0; j < M; j++) {
                scale = v[j];
                for (unsigned i = 0; i < N; i++)
                 res[i] += m(i, j) * scale;
               }
               return res;
             }

             // stream operator
             template <class T, unsigned M, unsigned N>
             inline std::ostream& operator<<(std::ostream& s,
              const Matrix<T, M, N>& m) {
               unsigned i, j;
               for (i = 0; i < M; i++) {
                s << "[";
                for (j = 0; j < N - 1; j++)
                 s << m(i, j) << ", ";
                s << m(i, j) << "]" << std::endl;
               }
               return s;
             }

            } // end of namespace vecmat

            #endif // VECMAT_H


            原因是在windows的頭文件里max,min已經被定義成宏了,所以要出問題!
            解決方法:

            #ifdef max
            #undef max
            #endif
            去掉max的定義。
            min同上。

            問題解決。

            posted on 2008-11-21 11:21 Alina-zl 閱讀(799) 評論(0)  編輯 收藏 引用

            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            導航

            統(tǒng)計

            常用鏈接

            留言簿(1)

            隨筆檔案

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            97久久国产综合精品女不卡| 久久久久国色AV免费看图片 | 人妻无码久久一区二区三区免费| 97久久国产综合精品女不卡 | 久久久久亚洲av综合波多野结衣 | 色综合合久久天天给综看| 国产精品久久婷婷六月丁香| 久久综合久久自在自线精品自| 久久99中文字幕久久| 一极黄色视频久久网站| 久久A级毛片免费观看| 久久久亚洲精品蜜桃臀| avtt天堂网久久精品| 99久久做夜夜爱天天做精品| 久久中文字幕一区二区| 97久久国产露脸精品国产| 久久久久亚洲精品中文字幕| 国产精品99久久99久久久| 国产精品久久久久蜜芽| 久久人人爽人人爽AV片| 国产一久久香蕉国产线看观看| 亚洲国产成人久久综合野外| 93精91精品国产综合久久香蕉| 精品一二三区久久aaa片| 久久性精品| 一级a性色生活片久久无少妇一级婬片免费放| 久久久噜噜噜久久熟女AA片| 国产成人精品综合久久久久| 久久久久久久免费视频| 武侠古典久久婷婷狼人伊人| 久久久久久久久久免免费精品| 久久99国产精品一区二区| 国产精品美女久久久m| 久久丫精品国产亚洲av不卡 | 久久久无码精品亚洲日韩按摩| 久久笫一福利免费导航 | 久久久久久a亚洲欧洲aⅴ| A狠狠久久蜜臀婷色中文网| 久久香蕉国产线看观看精品yw| 亚洲国产成人精品91久久久 | 国产精品久久久福利|