• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 74,  comments - 33,  trackbacks - 0
            Taxi

            Time Limit: 1 Second ???? Memory Limit: 32768 KB

            As we all know, it often rains suddenly in Hangzhou during summer time.I suffered a heavy rain when I was walking on the street yesterday, so I decided to take a taxi back school. I found that there were n people on the street trying to take taxis, and m taxicabs on the street then. Supposing that the cars waited still and each person walked at a speed of v, now given the positions of the n persons and the m taxicabs, you should find the minimum time needed for all the persons to get on the taxicabs. Assume that no two people got on the same taxicab.

            Input

            For each case, you are given two integers 0 <= n <= 100 and n <= m <= 100 on the first line, then n lines, each has two integers 0 <= Xi, Yi <= 1000000 describing the position of the ith person, then m lines, each has two integers 0 <= xi, yi <= 1000000 describing the position the ith taxicab, then a line has a float 0.00001 < v <= 10000000 which is the speed of the people.

            Output

            You shuold figue out one float rounded to two decimal digits for each case.

            Sample Input

            2 3
            0 0
            0 1
            1 0
            1 1
            2 1
            1
            

            Sample Output

            1.00
            本來以為是dp求解的,后來誤以為KM做了一下,無果,后來想了想類似Max_Match搜索TLE
            后來找到了這句話
            -----------------------------------------------------------------------
            n個人乘坐m個的(dˉe),已知人和的的坐標和人的速度,問每個人都打上
            的的最短時間。假設的的位置不能變且沒有兩個人打同一個的。
            假設T時間內(nèi)大家都可以打上的,那么對于t > T的時間,大家也可以
            打上的。因此,問題可以二分求解。
            對于給定的T,如果人可以在該時間內(nèi)走到某個的的位置,就在人和的
            之間連一條邊。于是問題的可行就要求該二分圖的最大匹配數(shù)等于n。求
            二分圖最大匹配可以用Hungary算法。


            ----------------------------------------------------------------
            來源:http://cuitianyi.com/ZOJ200901.pdf
            就居然明白了原來類最小最優(yōu)比例生成樹,我二分的時候是利用最大時間上限t二分 每次原圖中T<=t建圖得到
            邊 1 ,否則無邊。。結構很無情TLE,看了一下數(shù)據(jù)范圍 1000000 0.00001 < v <= 10000000 郁悶。
            隨后改成把所有時間存儲在Time數(shù)組中然后在數(shù)組中二分 不幸的是CE。Faint!!
            原來是自己用了link做了數(shù)組標號,而C++優(yōu)link函數(shù)。。。。。。A的很曲折。膜拜大牛的解題報告給了二分的思路
            (今天我是想不到)
            部分代碼如下:
            double?dis(NODE?a,NODE?b){
            ????
            return?sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));????
            }

            bool?DFS(int?x){
            ????
            for(int?i=0;i<m;i++)
            ????????
            if(mark[x][i]&&!visited[i]){
            ????????????visited[i]
            =true;
            ????????????
            if(linkn[i]==-1||DFS(linkn[i])){
            ????????????????linkn[i]
            =x;
            ????????????????
            return?true;????
            ????????????}
            ????
            ????????}

            ????
            return?false;????????
            }

            bool?Max_Match(){
            ????
            int?i,sum=0;
            ????memset(linkn,
            0xff,sizeof(linkn));
            ????
            for(i=0;i<n;i++){
            ????????memset(visited,
            0,sizeof(visited));
            ????????DFS(i);
            ????}

            ????
            for(i=0;i<m;i++)
            ????????
            if(linkn[i]!=-1)sum++;
            ????
            if(sum==n)return?true;
            ????
            else?return?false;????
            }

            void?change(double?x){
            ????
            for(int?i=0;i<n;i++)
            ????????
            for(int?j=0;j<m;j++)
            ????????????
            if(x>=map[i][j])mark[i][j]=true;
            ????????????
            else?mark[i][j]=false;????
            }
            posted on 2009-04-17 14:32 KNIGHT 閱讀(161) 評論(0)  編輯 收藏 引用
            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            常用鏈接

            留言簿(8)

            隨筆檔案

            文章檔案

            Friends

            OJ

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久最近最新中文字幕大全| 国内精品久久久久久野外| 亚洲精品无码久久毛片| 亚洲人AV永久一区二区三区久久 | 亚洲精品国产第一综合99久久| 久久久久国产| 久久精品无码一区二区无码 | 久久久久亚洲Av无码专| 国内精品久久久久久久涩爱| 亚洲精品无码久久千人斩| 狠狠色婷婷综合天天久久丁香| 久久精品综合网| 国产成人香蕉久久久久| 99久久国产综合精品麻豆| 青青草原综合久久大伊人导航 | 久久e热在这里只有国产中文精品99| 中文字幕久久亚洲一区| 99久久国产综合精品网成人影院 | 9999国产精品欧美久久久久久| 欧美精品乱码99久久蜜桃| 国内精品欧美久久精品| 国产精品美女久久久久网| 国内精品九九久久精品 | 亚洲一本综合久久| 国产精品久久久久久福利69堂| 久久久国产亚洲精品| 久久综合五月丁香久久激情| 99久久无码一区人妻a黑| 亚洲va中文字幕无码久久不卡| 午夜精品久久久久久| 欧洲国产伦久久久久久久| 久久久久亚洲AV成人网| 久久国产一片免费观看| 精品国产乱码久久久久久浪潮| 久久精品国产99国产电影网| 久久91精品国产91久久小草| 日产精品久久久久久久性色| 久久ww精品w免费人成| 国产精品无码久久久久久| 久久精品国产精品青草| 国产精品久久久久久福利漫画|