• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Life is Good.

            Enhance Tech and English
            隨筆 - 65, 文章 - 20, 評論 - 21, 引用 - 0
            數(shù)據(jù)加載中……

            Boosting Lisp performance - cons vs append and foreach vs while/nth

            From our PD- Nate Holt:

            All,

             More and more of you are finding that you have to deal with this goofy language called AutoLISP. Here are a couple items I pulled together related to some lisp “best practices”. Both apply to optimizing performance when processing large “lists” of data.

            Thanks,

            Nate.

                CONS versus APPEND

            The cons function adds an element to the beginning of a list. The append function can be used to give the equivalent of adding an element to the beginning or end of a list.

            Using the cons function can be MUCH faster than using append to build up a large list.

            We'll run two tests to create a dummy list of 10,000 integer numbers. The first test is using the "cons" function. Appload and type test1 [enter] at the command prompt.

            (defun c:test1 ( / )
              (setq i 1)
              (setq lst nil) ; start out with a blank list
              (repeat 10000
                (setq lst (cons i lst)) ; add next element to beginning of list
                (setq i (1+ i))
              )
              (setq lst (reverse lst)) ; put list back into correct order
              (princ)
            )

            The second test yields the same result but uses the "append" function:

            (defun c:test2 ( / )
              (setq i 1)
              (setq lst nil) ; start out with a blank list
              (repeat 10000
                (setq lst (append lst (list i))) ; append next element on to end of list
                (setq i (1+ i))
              )
              (princ)
            )

            The first test using "cons" builds the 10,000 element list in memory in less than 0.01 seconds (on my T61p).The second test using "append" builds the exact same 10,000 element list in memory but takes a full 3.55 seconds to execute ( ! ). Dealing with large lists, it appears that the "cons" function is many, many times faster.

            ·         FOREACH versus WHILE / NTH

            Let's say you need to cycle through a huge list, one list element at a time. There are two different functions that can cycle through a list, "foreach" and "nth" combined with a "while" loop. When dealing with a very large list, the "foreach" function can be much faster than using a while loop / nth function to index through the list.

            These tests use the 10,000 element list held in memory created be either of the above two tests. This next test uses "foreach" to cycle through the 10,000 element list.

            (defun c:test3 ( / )
              ; use 10,000 element "lst" created by test1 or test2
              (setq find_int (getint "\nFind integer="))
              (setq foundit nil)
              (foreach x lst
                (if (AND (not foundit) (= x find_int))
                  (progn
                    (setq foundit T)
                    (princ " found") 
                ) )   
              )
              (princ)
            )

            This next test does the same thing but uses a "while" loop and the "nth" function to index its way through the 10,000 element list:

            (defun c:test4 ( / )
              ; use 10,000 element "lst" created by test1 or test2
              (setq find_int (getint "\nFind integer="))
              (setq foundit nil)
              (setq ix 0)
              (setq slen (length lst))
              (while (AND (not foundit)(< ix slen))
                (if (= (nth ix lst) find_int) ; look for match
                  (progn ; Found the target element
                    (setq foundit T)
                    (princ " found") 
                ) )
                (setq ix (1+ ix))  
              )
              (princ)
            )

            For the test, looking for integer value 5000 (halfway into the list). The "foreach" function finds and exits in less than 0.01 second. The while loop using the "nth" function finds and exits in 0.07 seconds. Using foreach is significantly faster in processing this large list.

            posted on 2008-11-10 10:49 Mike Song 閱讀(351) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            国内精品久久久久久麻豆| 亚洲中文字幕无码久久2020| 久久久久av无码免费网| 久久99精品久久久久久野外| 精品国产一区二区三区久久久狼 | 亚洲色欲久久久综合网东京热| 九九热久久免费视频| 成人精品一区二区久久| 色成年激情久久综合| 热久久国产精品| 99久久亚洲综合精品网站| 久久亚洲国产中v天仙www| 欧美激情精品久久久久| 久久精品国产半推半就| 精品国产乱码久久久久久浪潮| 国产999精品久久久久久| 亚洲综合久久综合激情久久| 精品欧美一区二区三区久久久| 国产福利电影一区二区三区久久老子无码午夜伦不 | 精品免费tv久久久久久久| 99久久国产热无码精品免费久久久久 | 99久久国产热无码精品免费| 91久久精一区二区三区大全| 伊人色综合久久天天| 久久精品国产一区二区三区 | 热re99久久6国产精品免费| 97久久久精品综合88久久| 国产三级精品久久| 久久这里都是精品| 久久天堂电影网| 久久亚洲AV成人无码软件| 国产精品久久自在自线观看| 久久久人妻精品无码一区| 少妇高潮惨叫久久久久久| 国内精品久久久久久久coent | 91久久精一区二区三区大全| 久久九九久精品国产| 久久久久亚洲av无码专区| 无码乱码观看精品久久| 久久线看观看精品香蕉国产| 99久久无色码中文字幕人妻|