• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 9, comments - 0, trackbacks - 0, articles - 0
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            2013年5月17日

            • Make sure operator= is well-behaved when an object is assigned to itself. Techniques include comparing addresses of source and target objects, careful statement ordering, and copy-and-swap.

            • Make sure that any function operating on more than one object behaves correctly if two or more of the objects are the same.

            posted @ 2013-05-17 15:00 魏尚堂 閱讀(145) | 評論 (0)編輯 收藏

            This is only a convention; code that doesn't follow it will compile. However, the convention is followed by all the built-in types as well as by all the types in  the standard library (e.g., string, vector, complex, tr1::shared_ptr, etc.). Unless you have a good reason for doing things differently, don't.

            posted @ 2013-05-17 12:06 魏尚堂 閱讀(144) | 評論 (0)編輯 收藏

            base class constructors execute before derived class constructors, derived class data members have not been initialized when base class constructors run. If virtual functions called during base class construction went down to derived classes, the derived class functions would almost certainly refer to local data members, but those data members would not yet have been initialized.Calling down to parts of an object that have not yet been initialized is inherently dangerous, so C++ gives you no way to do it.

            #include <iostream>
            #include <string>
            #include <cstdlib>
            void print(std::string str){std::cout << str<< std::endl;}
            class Transaction {
                public:
                    Transaction()
                    {
                        print("Transaction Constructor");
                        logTransaction();
                    }
                    virtual void logTransaction() const // =0;
                    {
                        print("Transaction Log");
                    }
            };
            class BuyTransaction: public Transaction
            {
                public:
                    BuyTransaction(){   print("BuyTransaction Constructor");}
                    virtual void logTransaction() const
                    {
                        print("BuyTransaction Log");
                    }
            };
            int main()
            {
                BuyTransaction dbc;
                //dbc.logTransaction();
            }
            pure virtual functions cannot link.
            [shangtang@BTSOM-1 study]$ g++ TestT.cpp
            TestT.cpp: In constructor 'Transaction::Transaction()':
            TestT.cpp:14: warning: abstract virtual 'virtual void Transaction::logTransaction() const' called from constructor
            /tmp/ccXFzaHv.o: In function `Transaction::Transaction()':
            TestT.cpp:(.text._ZN11TransactionC2Ev[Transaction::Transaction()]+0x7f): undefined reference to `Transaction::logTransaction() const'
            collect2: ld returned 1 exit status
            virtual function can compile, run, but with surprise result
            [shangtang@BTSOM-1 study]$ ./a.out
            Transaction Constructor
            Transaction Log
            BuyTransaction Constructor

            The only way to avoid this problem is to make sure that none of your constructors or destructors call virtual functions on the object being created or destroyed and that all the functions they call obey the same constraint.

            posted @ 2013-05-17 11:27 魏尚堂 閱讀(209) | 評論 (0)編輯 收藏

            Depending on the precise conditions under which such pairs of simultaneously active exceptions arise, program execution either terminates or yields undefined behavior. In this example, it yields undefined behavior.
            C++ does not like destructors that emit exceptions!
            #include <iostream>
            #include <vector>
            struct Exception
            {
                Exception(){std::cout << "Exception Constructor" << std::endl;}
                ~Exception(){std::cout << "Exception Destructor" << std::endl;}
            };
            class Widget {
            public:
              ~Widget() {std::cout << "Widget Destructor" << std::endl; throw Exception();
              }        //this might emit an exception
              void print(){std::cout << "print" << std::endl;}
            };
                            
            void doSomething();
            int main()
            {
                doSomething();
            }
            void doSomething()
            {
              std::vector<Widget> v;
              v.push_back(Widget());
              v.push_back(Widget());
              v.push_back(Widget());
              v.push_back(Widget());
              std::vector<Widget>::iterator it = v.begin();
              while(it != v.end())
              {
                std::cout << "end" << std::endl;
                (*it).print();
                it++;
              }
            }
            complie with g++
            [shangtang@BTSOM-1 study]$ ./a.out
            Widget Destructor
            Exception Constructor
            terminate called after throwing an instance of 'Exception'
            Aborted (core dumped)
            There are two primary ways to avoid the trouble.

               1, Terminate the program if catch a exception, typically by calling std::abort (cstdlib)
              2, 
            Swallow the exception if catch a exception, print a log

            posted @ 2013-05-17 10:56 魏尚堂 閱讀(149) | 評論 (0)編輯 收藏

            2013年5月13日

            1, Declare destructors virtual in polymorphic base classes
            why ? because C++ specifies that when a derived class object is deleted through a pointer to a base class with a non-virtual destructor, results are undefined.What typically happens at runtime is that the derived part of the object is never destroyed

            2, if a class is not intended to be a base class, making the destructor virtual is usually a bad idea. 
            why?  if a class have virtual functions, it has extra overhead(vptr).

            3, In fact, many people summarize the situation this way: declare a virtual destructor in a class if and only if that class contains at least one virtual function

            4,Sometimes, however, you have a class that you'd like to be abstract, but you don't have any pure virtual functions.
            solution: declare pure virtual destructor.
            There is one twist, however you must provide a definition for the pure virtual destructor, or linker will complain.

            5, Not all base classes are designed to be used polymorphically. Neither the standard string type, for example, nor the STL container typesare designed to be base classes at all, much less polymorphic ones.


             
             

            posted @ 2013-05-13 14:45 魏尚堂 閱讀(215) | 評論 (0)編輯 收藏

            2013年1月24日

            thinking in c++ 有下面的例子,不太理解為什么這個宏中的條件表達式在編譯時就執行了,在此作個記號

            // A simple, compile-time assertion facility
            #define STATIC_ASSERT(x) \
               do { typedef int a[(x) ? 1 : -1]; } while(0)

            int main()
            {
               STATIC_ASSERT(sizeof(int) <= sizeof(long));  // Passes
               STATIC_ASSERT(sizeof(double) <= sizeof(int)); // Fails 
               return 0;
            }

            posted @ 2013-01-24 10:26 魏尚堂 閱讀(671) | 評論 (0)編輯 收藏

            2013年1月21日

            template <typename T> class dataList
            {
               public:
                  friend ostream& operator<<(ostream& outStream, const dataList <T> &outList);
            }
            template <typename T> ostream& operator<<(ostream& outStream, const dataList <T> &outList)
            {
               //....
               return outStream;
            }
            int main(int argc, char* argv[])
            {
               dataList <int> testList;
               cout << testList;
            }
            這個程序員是鏈接不過,
            錯誤信息:
             warning: friend declaration âstd::ostream& operator<<(std::ostream&, const dataList<T>&)â declares a non-template function
             note: (if this is not what you intended, make sure the function template has already been declared and add <> after the function name here)
            /tmp/cc9DSuka.o: In function `main':
            undefined reference to `operator<<(std::basic_ostream<char, std::char_traits<char> >&, dataList<int> const&)'
            collect2: ld returned 1 exit status
            錯誤原因解釋

            The problem is that the compiler is not trying to use the templated operator<< you provided, but rather a non-templated version.

            When you declare a friend inside a class you are injecting the declaration of that function in the enclosing scope. The following code has the effect of declaring (and not defining) a free function that takes a non_template_test argument by constant reference:

            class non_template_test { friend void f( non_template_test const & ); }; // declares here: // void f( non_template_test const & );

            The same happens with template classes, even if in this case it is a little less intuitive. When you declare (and not define) a friend function within the template class body, you are declaring a free function with that exact arguments. Note that you are declaring a function, not a template function:

            template<typename T> class template_test { friend void f( template_test<T> const & t ); }; // for each instantiating type T (int, double...) declares: // void f( template_test<int> const & ); // void f( template_test<double> const & );  int main() {     template_test<int> t1;     template_test<double> t2; }

            Those free functions are declared but not defined. The tricky part here is that those free functions are not a template, but regular free functions being declared. When you add the template function into the mix you get:

            template<typename T> class template_test { friend void f( template_test<T> const & ); }; // when instantiated with int, implicitly declares: // void f( template_test<int> const & );  template <typename T> void f( template_test<T> const & x ) {} // 1  int main() {    template_test<int> t1;    f( t1 ); }

            When the compiler hits the main function it instantiates the template template_test with type intand that declares the free function void f( template_test<int> const & ) that is not templated. When it finds the call f( t1 ) there are two f symbols that match: the non-template f( template_test<int> const & ) declared (and not defined) when template_test was instantiated and the templated version that is both declared and defined at 1. The non-templated version takes precedence and the compiler matches it.

            When the linker tries to resolve the non-templated version of f it cannot find the symbol and it thus fails.

            What can we do? There are two different solutions. In the first case we make the compiler provide non-templated functions for each instantiating type. In the second case we declare the templated version as a friend. They are subtly different, but in most cases equivalent.

            Having the compiler generate the non-templated functions for us:

            template <typename T> class test  { friend void f( test<T> const & ) {} }; // implicitly

            This has the effect of creating as many non-templated free functions as needed. When the compiler finds the friend declaration within the template test it not only finds the declaration but also the implementation and adds both to the enclosing scope.

            Making the templated version a friend

            To make the template a friend we must have it already declared and tell the compiler that the friend we want is actually a template and not a non-templated free function:

            template <typename T> class test; // forward declare the template class template <typename T> void f( test<T> const& ); // forward declare the template template <typename T> class test { friend void f<>( test<T> const& ); // declare f<T>( test<T> const &) a friend }; template <typename T> void f( test<T> const & ) {}

            In this case, prior to declaring f as a template we must forward declare the template. To declare the ftemplate we must first forward declare the test template. The friend declaration is modified to include the angle brackets that identify that the element we are making a friend is actually a template and not a free function.
            引用自 http://stackoverflow.com/questions/1810753/overloading-operator-for-a-templated-class
            從上面我可以學到一點:
            1, 編譯器匹配方法時非模板函數優先模板函數
            2, 友元函數模板必須提前聲明

            posted @ 2013-01-21 10:48 魏尚堂 閱讀(590) | 評論 (0)編輯 收藏

            2013年1月17日

            Linux Shell的通配符與正則表達式 http://blog.csdn.net/chen_dx/article/details/2463495

            posted @ 2013-01-17 14:01 魏尚堂 閱讀(147) | 評論 (0)編輯 收藏

            2012年11月27日

            Perform every resource allocation (e.g., new) in its own code statement which immediately gives the new resource to a manager object (e.g., auto_ptr).

            This guideline is easy to understand and remember, it neatly avoids all of the exception safety problems in the original problem, and by mandating the use of manager objects it helps to avoid many other exception safety problems as well. This guideline is a good candidate for inclusion in your team's coding standards

            link http://www.gotw.ca/gotw/056.htm

            file I/O http://www.zwqxin.com/archives/cpp/use-sstream.html

            posted @ 2012-11-27 10:03 魏尚堂 閱讀(139) | 評論 (0)編輯 收藏

            亚洲欧美另类日本久久国产真实乱对白 | 三级三级久久三级久久| 久久精品一区二区三区中文字幕| 亚洲综合久久综合激情久久| 中文字幕久久亚洲一区| 亚洲AV日韩精品久久久久| 国产亚洲欧美成人久久片| 久久久久亚洲AV成人网| 精品伊人久久大线蕉色首页| 国产精品视频久久久| 伊人久久五月天| 国产精品伊人久久伊人电影 | 午夜精品久久久久久久无码| 精品国产乱码久久久久久郑州公司 | 伊人久久综合精品无码AV专区| 青青草原综合久久大伊人精品| 国内精品久久久久影院亚洲| 亚洲综合婷婷久久| 日韩人妻无码一区二区三区久久 | 欧美丰满熟妇BBB久久久| 久久国产高清一区二区三区| 亚洲精品午夜国产VA久久成人| 久久婷婷五月综合成人D啪| 中文字幕成人精品久久不卡| 欧美精品久久久久久久自慰| 精品久久久久成人码免费动漫| 久久中文字幕无码专区| 久久福利片| 久久国产V一级毛多内射| 青青青青久久精品国产h| 国内精品久久久久影院优| 久久精品无码午夜福利理论片 | 久久久青草青青亚洲国产免观| 色综合久久无码中文字幕| 久久伊人精品一区二区三区| 久久无码国产专区精品| 怡红院日本一道日本久久 | 久久不射电影网| 国产99精品久久| 中文字幕成人精品久久不卡| 9999国产精品欧美久久久久久|