??xml version="1.0" encoding="utf-8" standalone="yes"?> http://www.xmission.com/~legalize/book/download/04-2D%20Applications.pdf
2、然后用IDirect3DSurface9的GetDC接口得到dc
3、用dcl图
4、用IDirect3DSurface9的ReleaseDC释放dc注意Q?/h3>1、buffer的格式必L以下几种之一Q?br />D3DFMT_R5G6B5,D3DFMT_X1R5G5B5,D3DFMT_R8G8B8,D3DFMT_X8R8G8B8
2、D3DPRESENT_PARAMETERS ?Flags需要设|D3DPRESENTFLAG_LOCKABLE_BACKBUFFER
3、GetDC接口在以下情况下会失败:
1Qsurface已经被锁定了
2Qsurface对应的dc没有被释?br />3Qsurface包含在一张texture中,而这个texture中的另一个surface已经被锁定了
4Qsurface存在于default memory poolQƈ且没有设|dynamic usage flag
5Qsurface存在于scratch pool参考文献:
]]>
勿在沙{高|
从今天开始,t实的学习,不在躁Q加油!
]]>
//Edmonds-Karp
//return the largest flow;flow[] will record every edge's flow
//n, the number of nodes in the graph;cap, the capacity
//O(VE^2)
#define N 100
#define inf 0x3f3f3f3f
int Edmonds_Karp(int n,int cap[][N],int source,int sink)

{
int flow[N][N];
int pre[N],que[N],d[N]; // d 是增q\长度Qpre 记录前驱Qque是BFS队列
int p,q,t,i,j;
if (source==sink) return inf;
memset(flow,0,sizeof(flow));
while (true)
{
memset(pre,-1,sizeof(pre));
d[source]=inf;
p=q=0, que[q++] = source;
while(p < q&&pre[sink]<0) // BFS 找\?/span>
{
t=que[p++];
for (i=0;i<n;i++)
if ( pre[i]<0 && (j=cap[t][i]-flow[t][i]) ) // j取得D余路径?/span>
pre[que[q++] = i] = t,d[i] = min(d[t], j);
}
if (pre[sink]<0) break; // 找不到增q\Q退?/span>
for (i=sink; i!=source; i=pre[i])
{
flow[pre[i]][i]+=d[sink]; // 正向量?/span>
flow[i][pre[i]]-=d[sink]; // 反向量?/span>
}
}
for (j=i=0; i<n; j+=flow[source][i++]);
return j;
}
]]>
]]>
#include <stdio.h>
#include <memory.h>
#define N 1000
class treearray

{
public:
int c[N],n;
void clear()
{
memset(this,0,sizeof(*this));
}
int lowbit(int x)
{
return x&(x^(x-1));
}
void change(int i,int d)
{
for (;i<=n;i+=lowbit(i)) c[i]+=d;
}
int getsum(int i)
{
int t;
for (t=0;i>0;i-=lowbit(i)) t+=c[i];
return t;
}
}t;
main()//附一个测试程?/span>

{
int i,x;
t.clear();
scanf("%d",&t.n);
for (i=1;i<=t.n;i++)
{
scanf("%d",&x);
t.change(i,x);
}
for (;scanf("%d",&x),x;) printf("%d\n",t.getsum(x));
return 0;
}
]]>
#define MAXSIZE 50001
int father[MAXSIZE];
int rank[MAXSIZE];
void initial()

{
memset(rank, 0, sizeof(rank));
for ( int i = 0; i < MAXSIZE; ++i )
father[i] = -1;
}
int find_set(int x)

{
int r = x, q;
while(father[r] != -1)
{
r = father[r];
}
while(x != r)
{
q = father[x];
father[x] = r;
x = q;
}
return r;
}
void union_set(int x, int y)

{
int a = find_set(x);
int b = find_set(y);
if (a == b)
return;
if (rank[a] > rank[b])
{
father[b] = a;
}
else
{
father[a] = b;
if (rank[a] == rank[b])
{
++rank[b];
}
}
}
]]>
/**//**
* TOPSORT(单版) 拓扑排序(Topological Sort)
* 输入Q有向图g
* 输出Q是否存在拓扑排序,如果存在Q获取拓扑排序序列seq
* l构Q图g用邻接矩阵表C?br>
* 法Q广度优先搜?BFS)
* 复杂度:O(|V|^2)
*/
#include <iostream>
#include <vector>
#include <queue>
#include <iterator>
#include <algorithm>
#include <numeric>
#include <climits>
using namespace std;
int n; // n Q顶点个?nbsp;
vector<vector<int> > g; // g Q图(graph)(用邻接矩?adjacent matrix)表示)
vector<int> seq; // seq Q拓扑序?sequence) 
bool TopSort()

{
vector<int> inc(n, 0);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (g[i][j] < INT_MAX) ++inc[j]; // 计算每个点的入度,
queue<int> que;
for (int j = 0; j < n; ++j)
if (inc[j] == 0) que.push(j); // 如果点的入度ؓ0Q入队?/span>
int seqc = 0;
seq.resize(n);
while (!que.empty()) // 如果队列que非空Q?/span>
{
int v = que.front(); que.pop();
seq[seqc++] = v; // 点v出队Q放入seq中,
for (int w = 0; w < n; ++w) // 遍历所有v指向的顶点wQ?/span>
if (g[v][w] < INT_MAX)
if (--inc[w] == 0) que.push(w); // 调整w的入度,如果w的入度ؓ0Q入队?nbsp;
}
return seqc == n; // 如果seq已处理顶Ҏ为nQ存在拓扑排序,否则存在回\?/span>
}
int main()

{
n = 7;
g.assign(n, vector<int>(n, INT_MAX));
g[0][1] = 1, g[0][2] = 1, g[0][3] = 1;
g[1][3] = 1, g[1][4] = 1;
g[2][5] = 1;
g[3][2] = 1, g[3][5] = 1, g[3][6] = 1;
g[4][3] = 1, g[4][6] = 1;
g[6][5] = 1; 
if (TopSort())
{
copy(seq.begin(), seq.end(), ostream_iterator<int>(cout, " "));
cout << endl;
}
else
{
cout << "circles exist" << endl;
}
system("pause");
return 0;
}
]]>
/**//*
Name: Trie树的基本实现
Author: MaiK
Description: Trie树的基本实现 ,包括查找 插入和删除操?卫星数据可以因情况而异)
*/
#include<algorithm>
#include<iostream>
using namespace std;
const int sonnum=26,base='a';
struct Trie

{
int num; //to remember how many word can reach here,that is to say,prefix
bool terminal; //If terminal==true ,the current point has no following point
struct Trie *son[sonnum]; //the following point
};
Trie *NewTrie()// create a new node

{
Trie *temp=new Trie;
temp->num=1;
temp->terminal=false;
for (int i=0; i<sonnum; ++i)
temp->son[i] = NULL;
return temp;
}
void Insert(Trie *pnt,char *s,int len)// insert a new word to Trie tree

{
Trie *temp=pnt;
for (int i=0;i<len;++i)
{
if (temp->son[s[i]-base]==NULL)
temp->son[s[i]-base]=NewTrie();
else
temp->son[s[i]-base]->num++;
temp=temp->son[s[i]-base];
}
temp->terminal=true;
}
void Delete(Trie *pnt) // delete the whole tree

{
if (pnt!=NULL)
{
for (int i=0;i<sonnum;++i)
if (pnt->son[i]!=NULL)
Delete(pnt->son[i]);
delete pnt;
pnt=NULL;
}
}
Trie* Find(Trie *pnt,char *s,int len) //trie to find the current word

{
Trie *temp=pnt;
for (int i=0;i<len;++i)
if (temp->son[s[i]-base]!=NULL)
temp=temp->son[s[i]-base];
else return NULL;
return temp;
}
]]>
// 大整C以一个小整数
void big_mul(int d[], int s[], int n)

{
int plus = 0;
for (int i = 1; i < 61; ++i)
{
d[i] = s[i] * n;
d[i] += plus;
plus = d[i] / 10;
d[i] %= 10;
}
}
// 大整数除以一个小整数
void big_div(int d[], int s[], int n)

{
int left = 0;
for (int i = 60; i > 0; --i)
{
left *= 10;
left += s[i];
if (left < n)
{
d[i] = 0;
}
else
{
d[i] = left / n;
left %= n;
}
}
}
]]>
/**//*
RMQ(Range Minimum/Maximum Query)问题Q?br>
RMQ问题是求l定区间中的最值问题。当Ӟ最单的法是O(n)的,但是对于查询ơ数很多Q设|多?00万次Q,O(n)的算法效率不够。可以用U段树将法优化到OQlogn)Q在U段树中保存U段的最|。不q,Sparse_Table法才是最好的Q它可以在O(nlogn)的预处理以后实现O(1)的查询效率。下面把Sparse Table法分成预处理和查询两部分来说明(以求最gؓ??br>
预处?
预处理用DP的思想Qf(i, j)表示[i, i+2^j - 1]区间中的最|我们可以开辟一个数l专门来保存f(i, j)的倹{?br>
例如Qf(0, 0)表示[0,0]之间的最?是num[0], f(0, 2)表示[0, 3]之间的最? f(2, 4)表示[2, 17]之间的最?br>
注意, 因ؓf(i, j)可以由f(i, j - 1)和f(i+2^(j-1), j-1)导出, 而递推的初?所有的f(i, 0) = i)都是已知?br>
所以我们可以采用自底向上的法递推地给出所有符合条件的f(i, j)的倹{?br>
查询:
假设要查询从m到nq一D늚最? 那么我们先求Z个最大的k, 使得k满2^k <= (n - m + 1).
于是我们可以把[m, n]分成两个(部分重叠?长度?^k的区? [m, m+2^k-1], [n-2^k+1, n];
而我们之前已l求Zf(m, k)为[m, m+2^k-1]的最? f(n-2^k+1, k)为[n-2^k+1, n]的最?br>
我们只要q回其中更小的那? 是我们惌的答? q个法的时间复杂度是O(1)?
例如, rmq(0, 11) = min(f(0, 3), f(4, 3))
*/

#include<iostream>
#include<cmath>
using namespace std;
#define MAXN 1000000
#define mmin(a, b) ((a)<=(b)?(a):(b))
#define mmax(a, b) ((a)>=(b)?(a):(b))
int num[MAXN];
int f1[MAXN][100];
int f2[MAXN][100];
//试输出所有的f(i, j)
void dump(int n)

{
int i, j;
for(i = 0; i < n; i++)
{
for(j = 0; i + (1<<j) - 1 < n; j++)
{
printf("f[%d, %d] = %d\t", i, j, f1[i][j]);
}
printf("\n");
}
for(i = 0; i < n; i++)
printf("%d ", num[i]);
printf("\n");
for(i = 0; i < n; i++)
{
for(j = 0; i + (1<<j) - 1 < n; j++)
{
printf("f[%d, %d] = %d\t", i, j, f2[i][j]);
}
printf("\n");
}
for(i = 0; i < n; i++)
printf("%d ", num[i]);
printf("\n");
}
//sparse table法
void st(int n)

{
int i, j, k, m;
k = (int) (log((double)n) / log(2.0));
for(i = 0; i < n; i++) 
{
f1[i][0] = num[i]; //递推的初?/span>
f2[i][0] = num[i];
}
for(j = 1; j <= k; j++)
{ //自底向上递推
for(i = 0; i + (1 << j) - 1 < n; i++)
{
m = i + (1 << (j - 1)); //求出中间的那个?/span>
f1[i][j] = mmax(f1[i][j-1], f1[m][j-1]);
f2[i][j] = mmin(f2[i][j-1], f2[m][j-1]);
}
}
}
//查询i和j之间的最?注意i是从0开始的
void rmq(int i, int j) 

{
int k = (int)(log(double(j-i+1)) / log(2.0)), t1, t2; //用对2d数的Ҏ求出k
t1 = mmax(f1[i][k], f1[j - (1<<k) + 1][k]);
t2 = mmin(f2[i][k], f2[j - (1<<k) + 1][k]);
printf("%d\n",t1 - t2);
}
int main()

{
int i,N,Q,A,B;
scanf("%d %d", &N, &Q);
for (i = 0; i < N; ++i)
{
scanf("%d", num+i);
}
st(N); //初始?br>
//dump(N); //试输出所有f(i, j)
while(Q--)
{
scanf("%d %d",&A,&B);
rmq(A-1, B-1);
}
return 0;
}
]]>