??xml version="1.0" encoding="utf-8" standalone="yes"?>亚洲AV无码久久精品蜜桃,久久久久亚洲Av无码专,51久久夜色精品国产http://www.shnenglu.com/polly-yang/category/17552.htmlzh-cnSun, 23 Sep 2012 17:35:13 GMTSun, 23 Sep 2012 17:35:13 GMT60DSP包含的图像算法库http://www.shnenglu.com/polly-yang/archive/2012/09/18/191141.htmlpollypollyTue, 18 Sep 2012 11:19:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/09/18/191141.htmlhttp://www.shnenglu.com/polly-yang/comments/191141.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/09/18/191141.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/191141.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/191141.html阅读全文

polly 2012-09-18 19:19 发表评论
]]>
国航空母舰?Google Earth上的坐标http://www.shnenglu.com/polly-yang/archive/2012/08/19/187652.htmlpollypollySun, 19 Aug 2012 02:34:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/08/19/187652.htmlhttp://www.shnenglu.com/polly-yang/comments/187652.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/08/19/187652.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/187652.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/187652.htmlGoogle Earth坐标Q美国航I母舰坐?/h2>

  q里|列?jin)已l发现的所有美国现役和退役的航空母舰。其中包括:(x)

  “鹰”?CV63  35°17'29.66"N,139°39'43.67"E

  “肯尼q?#8221;?CVN67  30°23'50.91"N, 81°24'14.86"W

  “米?#8221;?CVN68  32°42'47.88"N,117°11'22.49"W

  “艾森豪威?#8221;?CVN69  36°57'27.13"N, 76°19'46.35"W

  “林肯” ?CVN72   47°58'53.54"N,122°13'42.94"W

  “华盛?#8221;?CVN73  36°57'32.90"N, 76°19'45.10"W

  “杜鲁?#8221;?CVN75  36°48'53.25"N,76°17'49.29"W

  “无畏”?CV-11   40°45'53.88"N,74° 0'4.22"W

  “莱克星顿”?CV-2  27°48'54.13"N,97°23'19.65"W

  “星”?47°33'11.30"N,122°39'17.24"W

  “独立”?47°33'7.53"N,122°39'30.13"W

  “渔R?#8221;?47°33'10.63"N,122°39'9.53"W

  “?jng)瑞斯?#8221;号和“萨拉托加”受41°31'39.59"N,71°18'58.70"W

  “利?#8221;受39°53'6.36"N,75°10'45.55"W



polly 2012-08-19 10:34 发表评论
]]>
国军航空母舰列表http://www.shnenglu.com/polly-yang/archive/2012/08/19/187651.htmlpollypollySun, 19 Aug 2012 02:33:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/08/19/187651.htmlhttp://www.shnenglu.com/polly-yang/comments/187651.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/08/19/187651.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/187651.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/187651.html本列表收录了(jin)国军己退Ҏ(gu)现役中的航空母舰Q包?a class="mw-redirect" title="国军C~号" >船属于CV、CVA、CVB、CVL或CVN的全部舰只。编号在CVA-58之后的都属于航空母舰Q?a title="排水? >排水?/a>过75,000吨)(j)QCVN-65和CVN-68以后的都属于核动力航I母?/a>?/p>

排水量较?yu)?a class="mw-redirect" title="护卫航空母舰" >护航航空母舰QEscort Aircraft CarriersQCVEQ,则另行收录于国军护航航空母舰列表中?/p>
船舰~号 舰名 U别 附注
CV-1 Langley 兰利?/a> 以运煤舰朱比特号QUSS JupiterQ改造而成
CV-2 Lexington 列克星敦?/a> 5??/a>CV-3 Saratoga 萨拉托加?/a> 列克星敦U?/td> 7?5?/a>?a title="比基环C? >比基环C?/a>的核子武器试验中沉没
CV-4 Ranger H击者号 H击者 10?8?/a>退?/td>
CV-5 Yorktown U克城号 U克城 6??/a>?a title="中途岛h" >中途岛h中沉?/td>
CV-6 Enterprise 企业?/a> U克城 2?7?/a>退?/td>
CV-7 Wasp 胡蜂?/a> 9?5?/a>?a class="mw-redirect" title="日军" >日军潜艇?yn)L
CV-8 Hornet 大黄蜂号 U克城 10?7?/a>?a title="圣克鲁斯岛战役" >圣克鲁斯岛战役中受重创沉没
CV-9 Essex 6?0?/a>退?/td>
CV-10 Yorktown U克城号 埃塞克斯U?/td> 6?7?/a>退?/td>
CV-11 Intrepid 埃塞克斯U?/td> 3?5?/a>退?/td>
CV-12 Hornet 大黄蜂号 埃塞克斯U?/td> 6?4?/a>退?/td>
CV-13 Franklin 埃塞克斯U?/td> 2?7?/a>退?/td>
CV-14 Ticonderoga 提康L(fng)加号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-15 Randolph 伦道夫号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-16 Lexington 列克星敦?/a> 埃塞克斯U?/td> 11??/a>退?/td>
CV-17 Bunker Hill 邦克山号 埃塞克斯U?/td> 1??/a>退?/td>
CV-18 Wasp 胡蜂?/a> 埃塞克斯U?/td> 7??/a>退?/td>
CV-19 Hancock 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-20 Bennington 本宁号 埃塞克斯U?/td> 1?5?/a>退?/td>
CV-21 Boxer 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CVL-22 Independence 独立?/a> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-23 Princeton 普林斯顿?/a> 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-24 Belleau Wood 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-25 Cowpens U本斯号 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-26 Monterey 蒙特利号 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-27 Langley 兰利?/a> 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-28 Cabot 卡伯特号 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-29 Bataan 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CVL-30 San Jacinto 独立U?/td> ?#8220;克里夫兰U轻巡洋?#8221;改装而成
CV-31 Bon Homme Richard 好h理查德号 埃塞克斯U?/td> 7??/a>退?/td>
CV-32 Leyte 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-33 Kearsarge 奇沙d 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-34 Oriskany 奥里斯卡号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-35 Reprisal 埃塞克斯U?/td> 建造中途取?/td>
CV-36 Antietam 安提坦号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-37 Princeton 普林斯顿?/a> 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-38 Shangri-la 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-39 Lake Champlain 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-40 Tarawa 塔拉瓦号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CVB-41 Midway 中途岛U?/a> 4?1?/a>退?/td>
CVB-42 Franklin D. Roosevelt 中途岛U?/td>
CVB-43 Coral Sea 中途岛U?/td>
CVB-44 ?/td> 建造计划取?/td>
CV-45 Valley Forge 吉谷号 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CV-46 Iwo Jima 磺岛号 埃塞克斯U?/td> 建造计划取?/td>
CV-47 Philippine Sea 埃塞克斯U?/td> 长舰体埃塞克斯QLong-hull EssexQ?/td>
CVL-48 Saipan 1?4?/a> 正式除役
CVL-49 Wright q?/a> 塞班岛 5?7?/a> 正式除役
CV-50到CV-55 ?/td> 埃塞克斯U?/td> 建造计划取?/td>
CVB-56到CVB-57 ?/td> 中途岛U?/td> 建造中途取?/td>
CVA-58 United States 建造中途取?/td>
CVA-59 Forrestal 莱斯特U?/a> 9?1?/a> 正式除役
CVA-60 Saratoga 莱斯特U?/td> 8?0?/a> 正式除役
CVA-61 Ranger 莱斯特U?/td> 7?0?/a> 正式除役
CV-62 Independence 莱斯特U?/td> 9?0?/a> 正式除役
CV-63 Kitty Hawk 5?2?/a> 正式除役
CV-64 Constellation 鹰U?/td> 8??/a> 正式除役
CVN-65 Enterprise 企业?/a> 企业U?/td> 服役?/td>
CVA-66 America 鹰U?/td> 8??/a> 正式除役
CV-67 John F. Kennedy Q改良)(j)鹰U?/td> 8??/a> 正式除役
CVN-68 Nimitz 米兹号 服役?/td>
CVN-69 Dwight D. Eisenhower 米兹 服役?/td>
CVN-70 Carl Vinson 米兹 服役?/td>
CVN-71 Theodore Roosevelt |斯号 米兹 服役?/td>
CVN-72 Abraham Lincoln 米兹 服役?/td>
CVN-73 George Washington 华盛号 米兹 服役?/td>
CVN-74 John C. Stennis 米兹 服役?/td>
CVN-75 Harry S. Truman 杜鲁门号 米兹 服役?/td>
CVN-76 Ronald Reagan 米兹 服役?/td>
CVN-77 George H. W. Bush 米兹 服役?/td>
CVN-78 Gerald R. Ford 建造中
CVN-79 John F. Kennedy 肯尼q号 特U?/td> 建造中
CVN-80 未命?/a> 特U?/td> 计划?/td>


polly 2012-08-19 10:33 发表评论
]]>
高光谱,多光谱,光?/title><link>http://www.shnenglu.com/polly-yang/archive/2012/08/10/186806.html</link><dc:creator>polly</dc:creator><author>polly</author><pubDate>Fri, 10 Aug 2012 02:42:00 GMT</pubDate><guid>http://www.shnenglu.com/polly-yang/archive/2012/08/10/186806.html</guid><wfw:comment>http://www.shnenglu.com/polly-yang/comments/186806.html</wfw:comment><comments>http://www.shnenglu.com/polly-yang/archive/2012/08/10/186806.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/polly-yang/comments/commentRss/186806.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/polly-yang/services/trackbacks/186806.html</trackback:ping><description><![CDATA[<p align="left">高光谱成像是C代光甉|技术,兴v?O世纪8Oq代Q目前仍在迅猛发展巾。高光谱成像是相对多光谱成像而言Q通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分c,光谱成像技术一般可分成3cR?/p> <p align="left"> <wbr></p> <p align="left">(1) <wbr> 多光谱成?#8212;—光谱分L率在 delta_lambda/lambda=0Q?数量U,q样的传感器在可见光和近U外区域一般只有几个LDc(din)?/p> <p align="left"> <wbr></p> <p align="left">(2) <wbr> 高光谱成?#8212;— 光谱分L率在 delta_lambda/lambda=0Q?1数量U,q样的传感器在可见光和近U外区域有几卜到数百个LD,光谱分L率可达nmU?/p> <p align="left"> <wbr></p> <p align="left">(3) <wbr> 光谱成?#8212;— 光谱分L率在delta_lambda/lambda =OQ?01数量U,q样的传感器在可见光和近U外区域可达数千个LDc(din)?/p> <p align="left"> <wbr></p> <p align="left">众所周知Q光谱分析是自然U学中一U重要的研究手段Q光谱技术能(g)到被测物体的物理结构、化学成分等指标。光phZҎ(gu)量,而图像测量是ZI间Ҏ(gu)变化,两者各有其优缺炏V因此,可以说光谱成像技术是光谱分析技术和囑փ分析技术发展的必然l果Q是二者完结合的产物。光谱成像技术不仅具有光谱分辨能力,q具有图像分辨能力,利用光谱成像技术不仅可以对待检物体进行定性和定量分析Q而且q能q对其进行定位分析?/p> <p align="left"> <wbr></p> <p align="left">高光谱成像系l的主要工作部g是成像光׃?ni)AQ它是一U新型传感器Q?O世纪8Oq代初正式开始研Ӟ研制q类仪器的目的是取大量窄(jing)波段q箋(hu)光谱囑փ数据Q每个像元h几乎q箋(hu)的光谱数据。它是一pd光L波长处的光学囑փQ通常包含数十到数百个波段Q光谱分辨率一般ؓ(f)1~l0nm。由于高光谱成像所获得的高光谱囑փ能对囑փ中的每个像素提供一条几乎连l的光谱曲线Q其在待物上获得空间信息的同时又能获得比多光谱更ؓ(f)丰富光谱数据信息Q这些数据信息可用来生成复杂模型Q来q行判别、分cR识别图像中的材料?/p> <p align="left"> <wbr></p> <p align="left">通过高光谱成像获取待物的高光谱囑փ包含?jin)待物的丰富的I间、光谱和辐射三重信息。这些信息不仅表C(jin)</p> <p align="left">地物I间分布的媄(jing)像特征,同时也可能以其中某一像元或像元组为目标获取它们的辐射强度以及(qing)光谱特征。媄(jing)像、辐与光谱是高光谱囑փ中的3个重要特征,q?个特征的有机l合是高光谱图像?/p> <p align="left"> <wbr></p> <p align="left">高光谱图像数据ؓ(f)数据立方?cube)。通常囑փ像素的横坐标和纵坐标分别用z和Y来表C,光谱的L长信息以(Z卌u)表示。该数据立方体由沿着光谱轴的以一定光谱分辨率间隔的连l二l图像组成?/p><img src ="http://www.shnenglu.com/polly-yang/aggbug/186806.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/polly-yang/" target="_blank">polly</a> 2012-08-10 10:42 <a href="http://www.shnenglu.com/polly-yang/archive/2012/08/10/186806.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>舰船(g)初?/title><link>http://www.shnenglu.com/polly-yang/archive/2012/07/25/185048.html</link><dc:creator>polly</dc:creator><author>polly</author><pubDate>Wed, 25 Jul 2012 11:02:00 GMT</pubDate><guid>http://www.shnenglu.com/polly-yang/archive/2012/07/25/185048.html</guid><wfw:comment>http://www.shnenglu.com/polly-yang/comments/185048.html</wfw:comment><comments>http://www.shnenglu.com/polly-yang/archive/2012/07/25/185048.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/polly-yang/comments/commentRss/185048.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/polly-yang/services/trackbacks/185048.html</trackback:ping><description><![CDATA[法效率Q先验特征,法框架本周搞定?img src ="http://www.shnenglu.com/polly-yang/aggbug/185048.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/polly-yang/" target="_blank">polly</a> 2012-07-25 19:02 <a href="http://www.shnenglu.com/polly-yang/archive/2012/07/25/185048.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>Bilateral Filtering for Gray and Color Imageshttp://www.shnenglu.com/polly-yang/archive/2012/07/24/184893.htmlpollypollyTue, 24 Jul 2012 12:39:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/07/24/184893.htmlhttp://www.shnenglu.com/polly-yang/comments/184893.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/07/24/184893.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/184893.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/184893.html
  • Introduction
  • The Idea
  • The Gaussian Case
  • Experiments with Black-and-White Images
  • Experiments with Color Images
  • References
  • Introduction

    Filtering is perhaps the most fundamental operation of image processing and computer vision. In the broadest sense of the term "filtering", the value of the filtered image at a given location is a function of the values of the input image in a small neighborhood of the same location. For example, Gaussian low-pass filtering computes a weighted average of pixel values in the neighborhood, in which the weights decrease with distance from the neighborhood center. Although formal and quantitative explanations of this weight fall-off can be given, the intuition is that images typically vary slowly over space, so near pixels are likely to have similar values, and it is therefore appropriate to average them together. The noise values that corrupt these nearby pixels are mutually less correlated than the signal values, so noise is averaged away while signal is preserved.
    The assumption of slow spatial variations fails at edges, which are consequently blurred by linear low-pass filtering. How can we prevent averaging across edges, while still averaging within smooth regions?
    Many efforts have been devoted to reducing this undesired effect. Bilateral filtering is a simple, non-iterative scheme for edge-preserving smoothing.

    Back to Index

    The Idea

    The basic idea underlying bilateral filtering is to do in the range of an image what traditional filters do in its domain. Two pixels can be close to one another, that is, occupy nearby spatial location, or they can be similar to one another, that is, have nearby values, possibly in a perceptually meaningful fashion.
    Consider a shift-invariant low-pass domain filter applied to an image:

    The bold font for
    f and h emphasizes the fact that both input and output images may be multi-band. In order to preserve the DC component, it must be

    Range filtering is similarly defined:

    In this case, the kernel measures the
    photometric similarity between pixels. The normalization constant in this case is

    The spatial distribution of image intensities plays no role in range filtering taken by itself. Combining intensities from the entire image, however, makes little sense, since the distribution of image values far away from
    x ought not to affect the final value at x. In addition, one can show that range filtering without domain filtering merely changes the color map of an image, and is therefore of little use. The appropriate solution is to combine domain and range filtering, thereby enforcing both geometric and photometric locality. Combined filtering can be described as follows:

    with the normalization

    Combined domain and range filtering will be denoted as
    bilateral filtering. It replaces the pixel value at x with an average of similar and nearby pixel values. In smooth regions, pixel values in a small neighborhood are similar to each other, and the bilateral filter acts essentially as a standard domain filter, averaging away the small, weakly correlated differences between pixel values caused by noise. Consider now a sharp boundary between a dark and a bright region, as in figure 1(a).

    (a)

    (b)

    (c)

    Figure 1

    When the bilateral filter is centered, say, on a pixel on the bright side of the boundary, the similarity function
    s assumes values close to one for pixels on the same side, and values close to zero for pixels on the dark side. The similarity function is shown in figure 1(b) for a 23x23 filter support centered two pixels to the right of the step in figure 1(a). The normalization term k(x) ensures that the weights for all the pixels add up to one. As a result, the filter replaces the bright pixel at the center by an average of the bright pixels in its vicinity, and essentially ignores the dark pixels. Conversely, when the filter is centered on a dark pixel, the bright pixels are ignored instead. Thus, as shown in figure 1(c), good filtering behavior is achieved at the boundaries, thanks to the domain component of the filter, and crisp edges are preserved at the same time, thanks to the range component.

    Back to Index

    The Gaussian Case

    A simple and important case of bilateral filtering is shift-invariant Gaussian filtering, in which both the closeness function c and the similarity function s are Gaussian functions of the Euclidean distance between their arguments. More specifically, c is radially symmetric:

    where

    is the Euclidean distance. The similarity function
    s is perfectly analogous to c :

    where

    is a suitable measure of distance in intensity space. In the scalar case, this may be simply the absolute difference of the pixel difference or, since noise increases with image intensity, an intensity-dependent version of it. Just as this form of domain filtering is shift-invariant, the Gaussian range filter introduced above is insensitive to overall additive changes of image intensity. Of course, the range filter is shift-invariant as well.

    Back to Index

    Experiments with Black-and-White Images

    Figure 2 (a) and (b) show the potential of bilateral filtering for the removal of texture. The picture "simplification" illustrated by figure 2 (b) can be useful for data reduction without loss of overall shape features in applications such as image transmission, picture editing and manipulation, image description for retrieval.

    (a)

    (b)

    Figure 2

    Bilateral filtering with parameters sd =3 pixels and sr =50 intensity values is applied to the image in figure 3 (a) to yield the image in figure 3 (b). Notice that most of the fine texture has been filtered away, and yet all contours are as crisp as in the original image. Figure 3 (c) shows a detail of figure 3 (a), and figure 3 (d) shows the corresponding filtered version. The two onions have assumed a graphics-like appearance, and the fine texture has gone. However, the overall shading is preserved, because it is well within the band of the domain filter and is almost unaffected by the range filter. Also, the boundaries of the onions are preserved.

    (a)

    (b)

     

     

     

     

    (c)

    (d)

    Figure 3

    Back to Index

    Experiments with Color Images

    For black-and-white images, intensities between any two gray levels are still gray levels. As a consequence, when smoothing black-and-white images with a standard low-pass filter, intermediate levels of gray are produced across edges, thereby producing blurred images. With color images, an additional complication arises from the fact that between any two colors there are other, often rather different colors. For instance, between blue and red there are various shades of pink and purple. Thus, disturbing color bands may be produced when smoothing across color edges. The smoothed image does not just look blurred, it also exhibits odd-looking, colored auras around objects.

    (a)

    (b)

    (c)

    (d)

    Figure 4

    Figure 4 (a) shows a detail from a picture with a red jacket against a blue sky. Even in this unblurred picture, a thin pink-purple line is visible, and is caused by a combination of lens blurring and pixel averaging. In fact, pixels along the boundary, when projected back into the scene, intersect both red jacket and blue sky, and the resulting color is the pink average of red and blue. When smoothing, this effect is emphasized, as the broad, blurred pink-purple area in figure 4 (b) shows.
    To address this difficulty, edge-preserving smoothing could be applied to the red, green, and blue components of the image separately. However, the intensity profiles across the edge in the three color bands are in general different. Smoothing the three color bands separately results in an even more pronounced pink and purple band than in the original, as shown in figure 4 (c). The pink-purple band, however, is not widened as in the standard-blurred version of figure 4 (b).
    A much better result can be obtained with bilateral filtering. In fact, a bilateral filter allows combining the three color bands appropriately, and measuring photometric distances between pixels in the combined space. Moreover, this combined distance can be made to correspond closely to perceived dissimilarity by using Euclidean distance in the
    CIE-Lab color space. This color space is based on a large body of psychophysical data concerning color-matching experiments performed by human observers. In this space, small Euclidean distances are designed to correlate strongly with the perception of color discrepancy as experienced by an "average" color-normal human observer. Thus, in a sense, bilateral filtering performed in the CIE-Lab color space is the most natural type of filtering for color images: only perceptually similar colors are averaged together, and only perceptually important edges are preserved. Figure 4 (d) shows the image resulting from bilateral smoothing of the image in figure 4 (a). The pink band has shrunk considerably, and no extraneous colors appear.

    (a)

    (b)

    (c)

    Figure 5

    Figure 5 (c) shows the result of five iterations of bilateral filtering of the image in figure 5 (a). While a single iteration produces a much cleaner image (figure 5 (b)) than the original, and is probably sufficient for most image processing needs, multiple iterations have the effect of flattening the colors in an image considerably, but without blurring edges. The resulting image has a much smaller color map, and the effects of bilateral filtering are easier to see when displayed on a printed page. Notice the cartoon-like appearance of figure 5 (c). All shadows and edges are preserved, but most of the shading is gone, and no "new" colors are introduced by filtering.

    Back to Index

    References

    [1] C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India.
    [2] T. Boult, R.A. Melter, F. Skorina, and I. Stojmenovic,"G-neighbors",
    Proceedings of the SPIE Conference on Vision Geometry II, pages 96-109, 1993.
    [3] R.T. Chin and C.L. Yeh, "Quantitative evaluation of some edge-preserving noise-smoothing techniques",
    Computer Vision, Graphics, and Image Processing, 23:67-91, 1983.
    [4] L.S. Davis and A. Rosenfeld, "Noise cleaning by iterated local averaging",
    IEEE Transactions on Systems, Man, and Cybernetics, 8:705-710, 1978.
    [5] R.E. Graham, "Snow-removal - a noise-stripping process for picture signals",
    IRE Transactions on Information Theory, 8:129-144, 1961.
    [6] N. Himayat and S.A. Kassam, "Approximate performance analysis of edge preserving filters",
    IEEE Transactions on Signal Processing, 41(9):2764-77, 1993.
    [7] T.S. Huang, G.J. Yang, and G.Y. Tang, "A fast two-dimensional median filtering algorithm",
    IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1):13-18, 1979.
    [8] J.S. Lee, "Digital image enhancement and noise filtering by use of local statistics",
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(2):165-168, 1980.
    [9] M. Nagao and T. Matsuyama, "Edge preserving smoothing",
    Computer Graphics and Image Processing, 9:394-407, 1979.
    [10] P.M. Narendra, "A separable median filter for image noise smoothing",
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(1):20-29, 1981.
    [11] K.J. Overton and T.E. Weymouth, "A noise reducing preprocessing algorithm",
    Proceedings of the IEEE Computer Science Conference on Pattern Recognition and Image Processing, pages 498-507, Chicago, IL, 1979.
    [12] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion",
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639, 1990.
    [13] G. Ramponi, "A rational edge-preserving smoother",
    Proceedings of the International Conference on Image Processing, volume 1, pages 151-154, Washington, DC, 1995.
    [14] G. Sapiro and D.L. Ringach, "Anisotropic diffusion of color images",
    Proceedings of the SPIE, volume 2657, pages 471-382, 1996.
    [15] D.C.C. Wang, A.H. Vagnucci, and C.C. Li, "A gradient inverse weighted smoothing scheme and the evaluation of its performance",
    Computer Vision, Graphics, and Image Processing, 15:167-181, 1981.
    [16] G. Wyszecki and W. S. Styles,
    Color Science: Concepts and Methods, Quantitative Data and Formulae, John Wiley and Sons, New York, NY, 1982.
    [17] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, "Weighted median filters: a tutorial",IEEE
    Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(3):155-192, 1996.



    polly 2012-07-24 20:39 发表评论
    ]]>
    VS2010中配|opencv和Python2.6http://www.shnenglu.com/polly-yang/archive/2012/07/21/184489.htmlpollypollySat, 21 Jul 2012 07:54:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/07/21/184489.htmlhttp://www.shnenglu.com/polly-yang/comments/184489.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/07/21/184489.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/184489.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/184489.html

    前提Q?我自己已l安装好VS2010  + opencv2.4
    1.下蝲python 2.6
    2.下蝲numpyQ此处需要下载对应python版本的,如numpy-1.6.1-win32-superpack-python2.6.exe

    3.然后此目录下的cv2.pyd文gQ即D:\opencv2.4\build\python\2.6\cv2.pyd文gQ复制到你的python?span style="color: #cc0000">site-packages目录下面Q比如我的是C:\Python26\Lib\site-packagesq个目录下面.

    好了(jin)Q测试一下:(x)

    q入D:\opencv2.4\samples\python双击drawing.py或者cd到目录下面然后python drawing.py



    polly 2012-07-21 15:54 发表评论
    ]]>
    Gabor滤L结http://www.shnenglu.com/polly-yang/archive/2012/07/14/183327.htmlpollypollySat, 14 Jul 2012 03:09:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/07/14/183327.htmlhttp://www.shnenglu.com/polly-yang/comments/183327.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/07/14/183327.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/183327.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/183327.html阅读全文

    polly 2012-07-14 11:09 发表评论
    ]]>
    Mark几篇文章http://www.shnenglu.com/polly-yang/archive/2012/07/11/182857.htmlpollypollyWed, 11 Jul 2012 09:08:00 GMThttp://www.shnenglu.com/polly-yang/archive/2012/07/11/182857.htmlhttp://www.shnenglu.com/polly-yang/comments/182857.htmlhttp://www.shnenglu.com/polly-yang/archive/2012/07/11/182857.html#Feedback0http://www.shnenglu.com/polly-yang/comments/commentRss/182857.htmlhttp://www.shnenglu.com/polly-yang/services/trackbacks/182857.html2011 , Saliency and Gist Features for Target Detection in Satellite Images.  
    回头再ȝ

    polly 2012-07-11 17:08 发表评论
    ]]>
    GLCM-灰度q矩阵Q{Q?/title><link>http://www.shnenglu.com/polly-yang/archive/2012/02/08/165162.html</link><dc:creator>polly</dc:creator><author>polly</author><pubDate>Wed, 08 Feb 2012 08:34:00 GMT</pubDate><guid>http://www.shnenglu.com/polly-yang/archive/2012/02/08/165162.html</guid><wfw:comment>http://www.shnenglu.com/polly-yang/comments/165162.html</wfw:comment><comments>http://www.shnenglu.com/polly-yang/archive/2012/02/08/165162.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/polly-yang/comments/commentRss/165162.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/polly-yang/services/trackbacks/165162.html</trackback:ping><description><![CDATA[<div class="rfkoghv" id="cnblogs_post_body"> <p>     q矩阵用两个位|的象素的联合概率密度来定义Q它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布Ҏ(gu),是有兛_象亮度变化的二阶l计特征。它是定义一l纹理特征的基础?</p> <p>     一q图象的灰度q矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的l合信息Q它是分析图象的局部模式和它们排列规则的基?/p> <p>  设f(x,y)Zq二l数字图象,其大ؓ(f)M×NQ灰度别ؓ(f)Ng,则满一定空间关pȝ灰度q矩阵?/p> <p>P(i,j)=#?x1,y1),(x2,y2)∈M×N|f(x1,y1)=i,f(x2,y2)=j?/p> <p>  其中#(x)表示集合x中的元素个数Q显然P为Ng×Ng的矩阵,?x1,y1)?x2,y2)间距Mؓ(f)d,两者与坐标横u的夹角ؓ(f)θQ则可以得到各种间距?qing)角度的灰度q矩阵P(i,j,d,θ)?/p> <p>      U理特征提取的一U有效方法是以灰度的空间相关矩阵即q矩阵为基的E7Q,因ؓ(f)囑փ中相?ΔxQ?#916;y)的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阉|表示。若图像的灰度U定为NU,那么q矩阵为N×N矩阵Q可表示为M(ΔxQ?#916;y)(h,k)Q其中位?h,k)的元素mhk的DCZ个灰度ؓ(f)h而另一个灰度ؓ(f)k的两个相距ؓ(f)(ΔxQ?#916;y)的像素对出现的次数?br />  对粗U理的区域,其灰度共生矩늚mhkD集中于主对角UKq。因为对于粗U理Q像素对于h相同的灰度。而对于细U理的区域,其灰度共生矩阵中的mhk值则散布在各处?/p> <p>    Z(jin)能更直观Cq矩阵描述U理状况Q从q矩阵导出一些反映矩늊늚参数Q典型的有以下几U:(x) </p> <p>Q?Q能量:(x) 是灰度共生矩阵元素值的qx(chng)和,所以也U能量,反映?jin)图像灰度分布均匀E度和纹理粗l度。如果共生矩늚所有值均相等Q则ASM值小Q相反,如果其中一些值大而其它值小Q则ASM值大。当q矩阵中元素集中分布时Q此时ASM值大。ASM值大表明一U较均一和规则变化的U理模式?/p> <p>Q?Q对比度Q?Q其?。反映了(jin)囑փ的清晰度和纹理沟UҎ(gu)的E度。纹理沟U越深,其对比度大Q视觉效果越清晰Q反之,Ҏ(gu)度小Q则沟纹,效果模糊。灰度差卛_比度大的象素对越多,q个D大。灰度公生矩阵中q离对角U的元素D大,CON大?/p> <p>Q?Q相养I(x)它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此Q相兛_大反映了(jin)囑փ中局部灰度相x(chng)。当矩阵元素值均匀相等Ӟ相关值就?相反Q如果矩阵像元值相差很大则相关值小。如果图像中有水qx(chng)向纹理,则水qx(chng)向矩늚COR大于其余矩阵的COR倹{?/p> <p>Q?Q熵Q?是图像所h的信息量的度量,U理信息也属于图像的信息Q是一个随机性的度量Q当q矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相{时Q共生矩阵中元素分散分布Ӟ熵较大。它表示?jin)图像中U理的非均匀E度或复杂程度?/p> <p>Q?Q逆差距:(x) 反映囑փU理的同质性,度量囑փU理局部变化的多少。其值大则说明图像纹理的不同区域间缺变化,局部非常均匀?br /></p> <p>      其它参数:</p> <p>中?lt;Mean></p> <p>协方?lt;Variance></p> <p>同质?逆差?lt;Homogeneity></p> <p>反差<Contrast></p> <p>差异?lt;Dissimilarity></p> <p>?lt;Entropy></p> <p>二阶?lt;Angular Second Moment></p> <p>自相?lt;Correlation></p></div><img src ="http://www.shnenglu.com/polly-yang/aggbug/165162.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/polly-yang/" target="_blank">polly</a> 2012-02-08 16:34 <a href="http://www.shnenglu.com/polly-yang/archive/2012/02/08/165162.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>PCA原理Q{Q?/title><link>http://www.shnenglu.com/polly-yang/archive/2012/02/02/164834.html</link><dc:creator>polly</dc:creator><author>polly</author><pubDate>Thu, 02 Feb 2012 05:24:00 GMT</pubDate><guid>http://www.shnenglu.com/polly-yang/archive/2012/02/02/164834.html</guid><wfw:comment>http://www.shnenglu.com/polly-yang/comments/164834.html</wfw:comment><comments>http://www.shnenglu.com/polly-yang/archive/2012/02/02/164834.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/polly-yang/comments/commentRss/164834.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/polly-yang/services/trackbacks/164834.html</trackback:ping><description><![CDATA[<p>PCA-Principal Components Analysis<br />下面我就对PCA做一个简单的介绍吧:(x)</p> <p>       PCA是主成分分析Q主要用于数据降l_(d)对于一pdsample的featurel成的多l向量,多维向量里的某些元素本n没有区分性,比如某个元素在所有的sample中都?Q或者与1差距不大Q那么这个元素本w就没有区分性,用它做特征来区分QA(ch)献会(x)非常。所以我们的目的是找那些变化大的元素Q即方差大的那些l_(d)而去除掉那些变化不大的维Q从而feature留下的都?#8220;_֓”Q而且计算量也变小?jin)?/p> <p>       对于一个kl的feature来说Q相当于它的每一lfeature与其他维都是正交的(相当于在多维坐标pMQ坐标u都是垂直的)(j)Q那么我们可以变化这些维的坐标系Q从而ɘq个feature在某些维上方差大Q而在某些l上方差很小。例如,一?5度倾斜的椭圆,在第一坐标p,如果按照x,y坐标来投影,q些点的x和y的属性很隄于区分他们,因ؓ(f)他们在x,y轴上坐标变化的方差都差不多,我们无法Ҏ(gu)q个点的某个x属性来判断q个Ҏ(gu)哪个Q而如果将坐标轴旋转,以椭圆长轴ؓ(f)x_(d)则椭圆在长u上的分布比较长,方差大,而在短u上的分布短,方差,所以可以考虑只保留这些点的长轴属性,来区分椭圆上的点Q这P区分性比x,y轴的Ҏ(gu)要好Q?/p> <p>       所以我们的做法是求得一个kl特征的投媄(jing)矩阵Q这个投q阵可以将feature从高l降Cl。投q阵也可以叫做变换矩阵。新的低l特征必L个维都正交,特征向量都是正交的。通过求样本矩늚协方差矩阵,然后求出协方差矩늚特征向量Q这些特征向量就可以构成q个投媄(jing)矩阵?jin)。特征向量的选择取决于协方差矩阵的特征值的大小?/p> <p>        举一个例子:(x)</p> <p>         对于一个训l集Q?00个sampleQ特征是10l_(d)那么它可以徏立一?00*10的矩阵,作ؓ(f)h。求q个h的协方差矩阵Q得C?0*10的协方差矩阵Q然后求?gu)个协方差矩阵的特征值和特征向量Q应该有10个特征值和特征向量Q我们根据特征值的大小Q取前四个特征值所对应的特征向量,构成一?0*4的矩阵,q个矩阵是我们要求的特征矩阵,100*10的样本矩阵乘?sh)这?0*4的特征矩阵,得C(jin)一?00*4的新的降l之后的h矩阵Q每个sample的维C降了(jin)?/p> <p>当给定一个测试的特征集之后,比如1*10l的特征Q乘?sh)上面得到?0*4的特征矩阵,便可以得C?*4的特征,用这个特征去分类?/p> <p>       所以做PCA实际上是求得q个投媄(jing)矩阵Q用高维的特征乘?sh)这个投q阵,便可以将高维特征的维C降到指定的维数?/p> <p>        在opencv里面有专门的函数Q可以得到这个这个投q阵(特征矩阵Q?/p> <p>void cvCalcPCA( const CvArr* data, CvArr* avg, CvArr* eigenvalues, CvArr* eigenvectors, int flags );</p> <p> </p><img src ="http://www.shnenglu.com/polly-yang/aggbug/164834.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/polly-yang/" target="_blank">polly</a> 2012-02-02 13:24 <a href="http://www.shnenglu.com/polly-yang/archive/2012/02/02/164834.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>20110924-直接高斯消元?/title><link>http://www.shnenglu.com/polly-yang/archive/2011/09/24/156719.html</link><dc:creator>polly</dc:creator><author>polly</author><pubDate>Sat, 24 Sep 2011 14:14:00 GMT</pubDate><guid>http://www.shnenglu.com/polly-yang/archive/2011/09/24/156719.html</guid><wfw:comment>http://www.shnenglu.com/polly-yang/comments/156719.html</wfw:comment><comments>http://www.shnenglu.com/polly-yang/archive/2011/09/24/156719.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.shnenglu.com/polly-yang/comments/commentRss/156719.html</wfw:commentRss><trackback:ping>http://www.shnenglu.com/polly-yang/services/trackbacks/156719.html</trackback:ping><description><![CDATA[<p> </p> <div style="border-bottom: #cccccc 1px solid; border-left: #cccccc 1px solid; padding-bottom: 4px; background-color: #eeeeee; padding-left: 4px; width: 98%; padding-right: 5px; font-size: 13px; word-break: break-all; border-top: #cccccc 1px solid; border-right: #cccccc 1px solid; padding-top: 4px"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #008080"> 1</span><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /><span style="color: #000000">#include </span><span style="color: #000000"><</span><span style="color: #000000">stdio.h</span><span style="color: #000000">></span><span style="color: #000000"><br /></span><span style="color: #008080"> 2</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" />#include </span><span style="color: #000000"><</span><span style="color: #000000">math.h</span><span style="color: #000000">></span><span style="color: #000000"><br /></span><span style="color: #008080"> 3</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" />#include </span><span style="color: #000000"><</span><span style="color: #000000">stdlib.h</span><span style="color: #000000">></span><span style="color: #000000"><br /></span><span style="color: #008080"> 4</span><span style="color: #000000"><img id="Codehighlighter1_57_189_Open_Image" onclick="this.style.display='none'; Codehighlighter1_57_189_Open_Text.style.display='none'; Codehighlighter1_57_189_Closed_Image.style.display='inline'; Codehighlighter1_57_189_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif"><img style="display: none" id="Codehighlighter1_57_189_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_57_189_Closed_Text.style.display='none'; Codehighlighter1_57_189_Open_Image.style.display='inline'; Codehighlighter1_57_189_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif"></span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_57_189_Closed_Text">/**/</span><span id="Codehighlighter1_57_189_Open_Text"><span style="color: #008000">/*</span><span style="color: #008000"><br /></span><span style="color: #008080"> 5</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />0.500000 1.100000 3.100000<br /></span><span style="color: #008080"> 6</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />0.000000 -10.040000 -24.500000<br /></span><span style="color: #008080"> 7</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />0.000000 0.000000 -12.284024<br /></span><span style="color: #008080"> 8</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />-2.600000<br /></span><span style="color: #008080"> 9</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />1.000000<br /></span><span style="color: #008080">10</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />2.000000<br /></span><span style="color: #008080">11</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />hL键(h)l? . .<br /></span><span style="color: #008080">12</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockEnd.gif" alt="" /></span><span style="color: #008000">*/</span></span><span style="color: #000000"><br /></span><span style="color: #008080">13</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /></span><span style="color: #0000ff">#define</span><span style="color: #000000"> n 3</span><span style="color: #000000"><br /></span><span style="color: #008080">14</span><span style="color: #000000"><img id="Codehighlighter1_218_258_Open_Image" onclick="this.style.display='none'; Codehighlighter1_218_258_Open_Text.style.display='none'; Codehighlighter1_218_258_Closed_Image.style.display='inline'; Codehighlighter1_218_258_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif"><img style="display: none" id="Codehighlighter1_218_258_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_218_258_Closed_Text.style.display='none'; Codehighlighter1_218_258_Open_Image.style.display='inline'; Codehighlighter1_218_258_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif"></span><span style="color: #0000ff">double</span><span style="color: #000000"> a[</span><span style="color: #000000">3</span><span style="color: #000000">][</span><span style="color: #000000">3</span><span style="color: #000000">]</span><span style="color: #000000">=</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_218_258_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_218_258_Open_Text"><span style="color: #000000">{</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_219_231_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_219_231_Open_Text"><span style="color: #000000">{</span><span style="color: #000000">0.5</span><span style="color: #000000">,</span><span style="color: #000000">1.1</span><span style="color: #000000">,</span><span style="color: #000000">3.1</span><span style="color: #000000">}</span></span><span style="color: #000000">,</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_233_244_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_233_244_Open_Text"><span style="color: #000000">{</span><span style="color: #000000">5</span><span style="color: #000000">,</span><span style="color: #000000">0.96</span><span style="color: #000000">,</span><span style="color: #000000">6.5</span><span style="color: #000000">}</span></span><span style="color: #000000">,</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_246_257_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_246_257_Open_Text"><span style="color: #000000">{</span><span style="color: #000000">2</span><span style="color: #000000">,</span><span style="color: #000000">4.5</span><span style="color: #000000">,</span><span style="color: #000000">0.36</span><span style="color: #000000">}</span></span><span style="color: #000000">}</span></span><span style="color: #000000">;<br /></span><span style="color: #008080">15</span><span style="color: #000000"><img id="Codehighlighter1_273_285_Open_Image" onclick="this.style.display='none'; Codehighlighter1_273_285_Open_Text.style.display='none'; Codehighlighter1_273_285_Closed_Image.style.display='inline'; Codehighlighter1_273_285_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif"><img style="display: none" id="Codehighlighter1_273_285_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_273_285_Closed_Text.style.display='none'; Codehighlighter1_273_285_Open_Image.style.display='inline'; Codehighlighter1_273_285_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif"></span><span style="color: #0000ff">double</span><span style="color: #000000"> b[</span><span style="color: #000000">3</span><span style="color: #000000">]</span><span style="color: #000000">=</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_273_285_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_273_285_Open_Text"><span style="color: #000000">{</span><span style="color: #000000">6</span><span style="color: #000000">,</span><span style="color: #000000">0.96</span><span style="color: #000000">,</span><span style="color: #000000">0.02</span><span style="color: #000000">}</span></span><span style="color: #000000">;<br /></span><span style="color: #008080">16</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /></span><span style="color: #0000ff">double</span><span style="color: #000000"> m[</span><span style="color: #000000">3</span><span style="color: #000000">][</span><span style="color: #000000">3</span><span style="color: #000000">];<br /></span><span style="color: #008080">17</span><span style="color: #000000"><img id="Codehighlighter1_316_322_Open_Image" onclick="this.style.display='none'; Codehighlighter1_316_322_Open_Text.style.display='none'; Codehighlighter1_316_322_Closed_Image.style.display='inline'; Codehighlighter1_316_322_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif"><img style="display: none" id="Codehighlighter1_316_322_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_316_322_Closed_Text.style.display='none'; Codehighlighter1_316_322_Open_Image.style.display='inline'; Codehighlighter1_316_322_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif"></span><span style="color: #0000ff">double</span><span style="color: #000000"> x[</span><span style="color: #000000">3</span><span style="color: #000000">]</span><span style="color: #000000">=</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_316_322_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_316_322_Open_Text"><span style="color: #000000">{</span><span style="color: #000000">0</span><span style="color: #000000">,</span><span style="color: #000000">0</span><span style="color: #000000">,</span><span style="color: #000000">0</span><span style="color: #000000">}</span></span><span style="color: #000000">;<br /></span><span style="color: #008080">18</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /></span><span style="color: #0000ff">int</span><span style="color: #000000"> k,p;<br /></span><span style="color: #008080">19</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /><br /></span><span style="color: #008080">20</span><span style="color: #000000"><img id="Codehighlighter1_345_1322_Open_Image" onclick="this.style.display='none'; Codehighlighter1_345_1322_Open_Text.style.display='none'; Codehighlighter1_345_1322_Closed_Image.style.display='inline'; Codehighlighter1_345_1322_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif"><img style="display: none" id="Codehighlighter1_345_1322_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_345_1322_Closed_Text.style.display='none'; Codehighlighter1_345_1322_Open_Image.style.display='inline'; Codehighlighter1_345_1322_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif"></span><span style="color: #0000ff">int</span><span style="color: #000000"> main()</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_345_1322_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_345_1322_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">21</span><span style="color: #000000"><img id="Codehighlighter1_369_778_Open_Image" onclick="this.style.display='none'; Codehighlighter1_369_778_Open_Text.style.display='none'; Codehighlighter1_369_778_Closed_Image.style.display='inline'; Codehighlighter1_369_778_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_369_778_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_369_778_Closed_Text.style.display='none'; Codehighlighter1_369_778_Open_Image.style.display='inline'; Codehighlighter1_369_778_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">    </span><span style="color: #0000ff">for</span><span style="color: #000000">(k</span><span style="color: #000000">=</span><span style="color: #000000">0</span><span style="color: #000000">;k</span><span style="color: #000000"><</span><span style="color: #000000">n</span><span style="color: #000000">-</span><span style="color: #000000">1</span><span style="color: #000000">;k</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_369_778_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_369_778_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">22</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />            </span><span style="color: #0000ff">if</span><span style="color: #000000">(a[k][k]</span><span style="color: #000000">==</span><span style="color: #000000">0</span><span style="color: #000000">)  </span><span style="color: #0000ff">break</span><span style="color: #000000">;<br /></span><span style="color: #008080">23</span><span style="color: #000000"><img id="Codehighlighter1_422_764_Open_Image" onclick="this.style.display='none'; Codehighlighter1_422_764_Open_Text.style.display='none'; Codehighlighter1_422_764_Closed_Image.style.display='inline'; Codehighlighter1_422_764_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_422_764_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_422_764_Closed_Text.style.display='none'; Codehighlighter1_422_764_Open_Image.style.display='inline'; Codehighlighter1_422_764_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">            </span><span style="color: #0000ff">else</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_422_764_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_422_764_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">24</span><span style="color: #000000"><img id="Codehighlighter1_467_749_Open_Image" onclick="this.style.display='none'; Codehighlighter1_467_749_Open_Text.style.display='none'; Codehighlighter1_467_749_Closed_Image.style.display='inline'; Codehighlighter1_467_749_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_467_749_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_467_749_Closed_Text.style.display='none'; Codehighlighter1_467_749_Open_Image.style.display='inline'; Codehighlighter1_467_749_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">                     </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> i</span><span style="color: #000000">=</span><span style="color: #000000">k</span><span style="color: #000000">+</span><span style="color: #000000">1</span><span style="color: #000000">;i</span><span style="color: #000000"><</span><span style="color: #000000">n;i</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_467_749_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_467_749_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">25</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />                             m[i][k]</span><span style="color: #000000">=</span><span style="color: #000000">a[i][k]</span><span style="color: #000000">/</span><span style="color: #000000">a[k][k];<br /></span><span style="color: #008080">26</span><span style="color: #000000"><img id="Codehighlighter1_572_673_Open_Image" onclick="this.style.display='none'; Codehighlighter1_572_673_Open_Text.style.display='none'; Codehighlighter1_572_673_Closed_Image.style.display='inline'; Codehighlighter1_572_673_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_572_673_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_572_673_Closed_Text.style.display='none'; Codehighlighter1_572_673_Open_Image.style.display='inline'; Codehighlighter1_572_673_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">                             </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> j</span><span style="color: #000000">=</span><span style="color: #000000">k;j</span><span style="color: #000000"><</span><span style="color: #000000">n;j</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_572_673_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_572_673_Open_Text"><span style="color: #000000">{        <br /></span><span style="color: #008080">27</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />                             a[i][j]</span><span style="color: #000000">=</span><span style="color: #000000">a[i][j]</span><span style="color: #000000">-</span><span style="color: #000000">m[i][k]</span><span style="color: #000000">*</span><span style="color: #000000">a[k][j];<br /></span><span style="color: #008080">28</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />                             }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">29</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />                             b[i]</span><span style="color: #000000">=</span><span style="color: #000000">b[i]</span><span style="color: #000000">-</span><span style="color: #000000">b[k]</span><span style="color: #000000">*</span><span style="color: #000000">m[i][k];<br /></span><span style="color: #008080">30</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />                     }</span></span><span style="color: #000000"> <br /></span><span style="color: #008080">31</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />            }</span></span><span style="color: #000000">        <br /></span><span style="color: #008080">32</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />    }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">33</span><span style="color: #000000"><img id="Codehighlighter1_804_915_Open_Image" onclick="this.style.display='none'; Codehighlighter1_804_915_Open_Text.style.display='none'; Codehighlighter1_804_915_Closed_Image.style.display='inline'; Codehighlighter1_804_915_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_804_915_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_804_915_Closed_Text.style.display='none'; Codehighlighter1_804_915_Open_Image.style.display='inline'; Codehighlighter1_804_915_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">    </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> i</span><span style="color: #000000">=</span><span style="color: #000000">0</span><span style="color: #000000">;i</span><span style="color: #000000"><</span><span style="color: #000000">n;i</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_804_915_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_804_915_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">34</span><span style="color: #000000"><img id="Codehighlighter1_838_874_Open_Image" onclick="this.style.display='none'; Codehighlighter1_838_874_Open_Text.style.display='none'; Codehighlighter1_838_874_Closed_Image.style.display='inline'; Codehighlighter1_838_874_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_838_874_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_838_874_Closed_Text.style.display='none'; Codehighlighter1_838_874_Open_Image.style.display='inline'; Codehighlighter1_838_874_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">            </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> j</span><span style="color: #000000">=</span><span style="color: #000000">0</span><span style="color: #000000">;j</span><span style="color: #000000"><</span><span style="color: #000000">3</span><span style="color: #000000">;j</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_838_874_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_838_874_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">35</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />            printf(</span><span style="color: #000000">"</span><span style="color: #000000">%f </span><span style="color: #000000">"</span><span style="color: #000000">,a[i][j]);}</span></span><span style="color: #000000"><br /></span><span style="color: #008080">36</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />            printf(</span><span style="color: #000000">"</span><span style="color: #000000">\n</span><span style="color: #000000">"</span><span style="color: #000000">);        <br /></span><span style="color: #008080">37</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />    }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">38</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />    </span><span style="color: #008000">//</span><span style="color: #008000">huidai--有错 </span><span style="color: #008000"><br /></span><span style="color: #008080">39</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" /></span><span style="color: #000000">    x[n</span><span style="color: #000000">-</span><span style="color: #000000">1</span><span style="color: #000000">]</span><span style="color: #000000">=</span><span style="color: #000000">b[n</span><span style="color: #000000">-</span><span style="color: #000000">1</span><span style="color: #000000">];</span><span style="color: #008000">//</span><span style="color: #008000">Right.. </span><span style="color: #008000"><br /></span><span style="color: #008080">40</span><span style="color: #008000"><img id="Codehighlighter1_991_1212_Open_Image" onclick="this.style.display='none'; Codehighlighter1_991_1212_Open_Text.style.display='none'; Codehighlighter1_991_1212_Closed_Image.style.display='inline'; Codehighlighter1_991_1212_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_991_1212_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_991_1212_Closed_Text.style.display='none'; Codehighlighter1_991_1212_Open_Image.style.display='inline'; Codehighlighter1_991_1212_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif"></span><span style="color: #000000">    </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> i</span><span style="color: #000000">=</span><span style="color: #000000">n</span><span style="color: #000000">-</span><span style="color: #000000">1</span><span style="color: #000000">;i</span><span style="color: #000000">>=</span><span style="color: #000000">0</span><span style="color: #000000">;i</span><span style="color: #000000">--</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_991_1212_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_991_1212_Open_Text"><span style="color: #000000">{</span><span style="color: #008000">//</span><span style="color: #008000">where is the error</span><span style="color: #008000"><br /></span><span style="color: #008080">41</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" /></span><span style="color: #000000">          </span><span style="color: #0000ff">double</span><span style="color: #000000"> sum</span><span style="color: #000000">=</span><span style="color: #000000">0</span><span style="color: #000000">;</span><span style="color: #008000">//</span><span style="color: #008000">ok<img src="http://www.shnenglu.com/Images/dot.gif" alt="" />.Vectory<img src="http://www.shnenglu.com/Images/dot.gif" alt="" />.</span><span style="color: #008000"><br /></span><span style="color: #008080">42</span><span style="color: #008000"><img id="Codehighlighter1_1088_1171_Open_Image" onclick="this.style.display='none'; Codehighlighter1_1088_1171_Open_Text.style.display='none'; Codehighlighter1_1088_1171_Closed_Image.style.display='inline'; Codehighlighter1_1088_1171_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_1088_1171_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_1088_1171_Closed_Text.style.display='none'; Codehighlighter1_1088_1171_Open_Image.style.display='inline'; Codehighlighter1_1088_1171_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif"></span><span style="color: #000000">          </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> j</span><span style="color: #000000">=</span><span style="color: #000000">i</span><span style="color: #000000">+</span><span style="color: #000000">1</span><span style="color: #000000">;j</span><span style="color: #000000"><</span><span style="color: #000000">n;j</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_1088_1171_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_1088_1171_Open_Text"><span style="color: #000000">{</span><span style="color: #008000">//</span><span style="color: #008000">Be careful while using for loop!!!</span><span style="color: #008000"><br /></span><span style="color: #008080">43</span><span style="color: #008000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" /></span><span style="color: #000000">                sum</span><span style="color: #000000">+=</span><span style="color: #000000">a[i][j]</span><span style="color: #000000">*</span><span style="color: #000000">x[j];<br /></span><span style="color: #008080">44</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />          }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">45</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />          x[i]</span><span style="color: #000000">=</span><span style="color: #000000">(b[i]</span><span style="color: #000000">-</span><span style="color: #000000">sum)</span><span style="color: #000000">/</span><span style="color: #000000">a[i][i];<br /></span><span style="color: #008080">46</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />    }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">47</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />    <br /></span><span style="color: #008080">48</span><span style="color: #000000"><img id="Codehighlighter1_1243_1294_Open_Image" onclick="this.style.display='none'; Codehighlighter1_1243_1294_Open_Text.style.display='none'; Codehighlighter1_1243_1294_Closed_Image.style.display='inline'; Codehighlighter1_1243_1294_Closed_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockStart.gif"><img style="display: none" id="Codehighlighter1_1243_1294_Closed_Image" onclick="this.style.display='none'; Codehighlighter1_1243_1294_Closed_Text.style.display='none'; Codehighlighter1_1243_1294_Open_Image.style.display='inline'; Codehighlighter1_1243_1294_Open_Text.style.display='inline';" align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ContractedSubBlock.gif">    </span><span style="color: #0000ff">for</span><span style="color: #000000">(</span><span style="color: #0000ff">int</span><span style="color: #000000"> i</span><span style="color: #000000">=</span><span style="color: #000000">0</span><span style="color: #000000">;i</span><span style="color: #000000"><</span><span style="color: #000000">n;i</span><span style="color: #000000">++</span><span style="color: #000000">)</span><span style="border-bottom: #808080 1px solid; border-left: #808080 1px solid; background-color: #ffffff; display: none; border-top: #808080 1px solid; border-right: #808080 1px solid" id="Codehighlighter1_1243_1294_Closed_Text"><img src="http://www.shnenglu.com/Images/dot.gif" alt="" /></span><span id="Codehighlighter1_1243_1294_Open_Text"><span style="color: #000000">{<br /></span><span style="color: #008080">49</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />            printf(</span><span style="color: #000000">"</span><span style="color: #000000">%3.2f\n</span><span style="color: #000000">"</span><span style="color: #000000">,x[i]);        <br /></span><span style="color: #008080">50</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedSubBlockEnd.gif" alt="" />    }</span></span><span style="color: #000000"><br /></span><span style="color: #008080">51</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />    <br /></span><span style="color: #008080">52</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/InBlock.gif" alt="" />    system(</span><span style="color: #000000">"</span><span style="color: #000000">pause</span><span style="color: #000000">"</span><span style="color: #000000">);<br /></span><span style="color: #008080">53</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/ExpandedBlockEnd.gif" alt="" />}</span></span><span style="color: #000000"><br /></span><span style="color: #008080">54</span><span style="color: #000000"><img align="top" src="http://www.shnenglu.com/images/OutliningIndicators/None.gif" alt="" /></span></div> <p> </p><img src ="http://www.shnenglu.com/polly-yang/aggbug/156719.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.shnenglu.com/polly-yang/" target="_blank">polly</a> 2011-09-24 22:14 <a href="http://www.shnenglu.com/polly-yang/archive/2011/09/24/156719.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item></channel></rss> <footer> <div class="friendship-link"> <p>лǵվܻԴȤ</p> <a href="http://www.shnenglu.com/" title="精品视频久久久久">精品视频久久久久</a> <div class="friend-links"> </div> </div> </footer> <a href="http://www.ahzyjlr.cn" target="_blank">Ʒþþþþ</a>| <a href="http://www.17kav.cn" target="_blank">պŷۺϾþӰԺDs</a>| <a href="http://www.ssc860.cn" target="_blank">˾þþƷӰԺ</a>| <a href="http://www.0813e.cn" target="_blank">Ưޱ˾þþƷ</a>| <a href="http://www.addlife.cn" target="_blank">þþƷһպ</a>| <a href="http://www.wuxicld.cn" target="_blank">뾫ƷþþӰ</a>| <a href="http://www.wjjj8.cn" target="_blank">aëƬ÷˾þ</a>| <a href="http://www.jiademandu.cn" target="_blank">AVþþƷ</a>| <a href="http://www.mir818.cn" target="_blank">þþĻ</a>| <a href="http://www.qymlw.cn" target="_blank">99þһa</a>| <a href="http://www.thha.cn" target="_blank">þþƵ</a>| <a href="http://www.yeziseo.cn" target="_blank">þԭƷ</a>| <a href="http://www.0546bbs.cn" target="_blank">þ91Ʒ91þС</a>| <a href="http://www.gouyimai.cn" target="_blank">뾫Ʒþþþ.. </a>| <a href="http://www.uxgj.cn" target="_blank">޾ƷþþӰԺӰƬ</a>| <a href="http://www.suec.net.cn" target="_blank">þþþƷSmվ</a>| <a href="http://www.huangshanlife.cn" target="_blank">뾫ƷþѼ</a>| <a href="http://www.wowokk.cn" target="_blank">޹ŮƷþþþá</a>| <a href="http://www.semtmtw.cn" target="_blank">þ߳ˮ</a>| <a href="http://www.ynxcm.cn" target="_blank">ŷ龫Ʒþþþþ</a>| <a href="http://www.0592xxw.cn" target="_blank">91Ƶ91þþ</a>| <a href="http://www.yangyongfu.com.cn" target="_blank">޾Ʒtvþþþþþþ</a>| <a href="http://www.51d1.cn" target="_blank">þþȹ͵ۺ</a>| <a href="http://www.zhoupeng520.cn" target="_blank">þ¾ƷĻ</a>| <a href="http://www.2nder.cn" target="_blank">Ʒ99þþþþö</a>| <a href="http://www.um258.cn" target="_blank">ٸþþþþñŪ߳ </a>| <a href="http://www.vljp.cn" target="_blank">þþþƷҹѲ</a>| <a href="http://www.0208958.cn" target="_blank">ҹŷƷþþþþþ</a>| <a href="http://www.zl6688.com.cn" target="_blank">þþwww˳</a>| <a href="http://www.zajiaosd.cn" target="_blank">þþþùպƷվ</a>| <a href="http://www.7-go.cn" target="_blank">˾Ʒһþþ</a>| <a href="http://www.024qixinyu.cn" target="_blank">91Ʒ91þ</a>| <a href="http://www.liangfang013.cn" target="_blank">91ɫۺϾþѷ</a>| <a href="http://www.diylady.cn" target="_blank">þ99ȹоƷ</a>| <a href="http://www.mmmj.net.cn" target="_blank">ƷƷھþø</a>| <a href="http://www.8812345.com.cn" target="_blank">ƷӰӾþۺ</a>| <a href="http://www.fangfangmm.cn" target="_blank">þþþƷ</a>| <a href="http://www.macsales.cn" target="_blank">þþþùһëƬ </a>| <a href="http://www.viples.cn" target="_blank">þ99ƷСѼ </a>| <a href="http://www.kvgr.cn" target="_blank">þAAAƬ69</a>| <a href="http://www.km10000.net.cn" target="_blank">Ʒþþþa</a>| <script> (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })(); </script> </body>