鎴戜滑鍙互鐩存帴鏋勯狅細
1. PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup
錛堢粰浜鴻劯鍖栧鐨勯鏍艱漿縐伙級
2.CartoonGAN: Generative Adversarial Networks for Photo Cartoonization
錛堝皢鍥劇墖杞寲涓哄崱閫氶鏍肩殑GAN錛?/p>
3.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
錛堜漢鑴稿縐嶉鏍艱漿鎹級
4.Multi-Content GAN for Few-Shot Font Style Transfer
錛堝瓧浣撻鏍艱漿鎹級
5.DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks
錛堝浘鍒板浘杞崲錛?/p>
6. Conditional Image-to-Image translation
錛堝浘鍒板浘鐨勮漿鎹級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Conditional_Image-to-Image_Translation_CVPR_2018_paper.pdf
1. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
錛堝幓妯$硦錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Kupyn_DeblurGAN_Blind_Motion_CVPR_2018_paper.pdf
2.Attentive Generative Adversarial Network for Raindrop Removal from A Single Image
錛堝幓闄ゅ浘鐗囦腑鐨勯洦婊達級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Qian_Attentive_Generative_Adversarial_CVPR_2018_paper.pdf
3. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs
錛堢敤浜庣収鐗囧寮猴級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Deep_Photo_Enhancer_CVPR_2018_paper.pdf
4. SeGAN: Segmenting and Generating the Invisible
錛堝幓閬尅錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_SeGAN_Segmenting_and_CVPR_2018_paper.pdf
5.Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal
錛堝幓闃村獎錛?/p>
6.Image Blind Denoising With Generative Adversarial Network Based Noise Modeling
錛堝幓鍣0錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Image_Blind_Denoising_CVPR_2018_paper.pdf
7. Single Image Dehazing via Conditional Generative Adversarial Network
錛堝幓鍣0錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Single_Image_Dehazing_CVPR_2018_paper.pdf
1. ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing
錛堢┖闂磋漿鎹㈢敓鎴愬浘鐗囷級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_ST-GAN_Spatial_Transformer_CVPR_2018_paper.pdf
2. SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis
錛堢敱杈規(guī)鐢熸垚鍥劇墖錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_SketchyGAN_Towards_Diverse_CVPR_2018_paper.pdf
3. TextureGAN: Controlling Deep Image Synthesis with Texture Patches
錛堢敱綰硅礬鐢熸垚鍥劇墖錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Xian_TextureGAN_Controlling_Deep_CVPR_2018_paper.pdf
4. Eye In-Painting with Exemplar Generative Adversarial Networks
錛堢粰浜虹墿鐢葷溂鐫涳級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Dolhansky_Eye_In-Painting_With_CVPR_2018_paper.pdf
5.Photographic Text-to-Image Synthesis with a Hierarchically-nested Adversarial Network
錛堟枃鏈敓鎴愬浘鐗囷級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Photographic_Text-to-Image_Synthesis_CVPR_2018_paper.pdf
6. Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks
錛堢敓鎴恖ogo錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sage_Logo_Synthesis_and_CVPR_2018_paper.pdf
7. Cross-View Image Synthesis Using Conditional GANs
錛堣鍖轟刊瑙嗗浘鍜岀洿瑙嗚漿鎹級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Regmi_Cross-View_Image_Synthesis_CVPR_2018_paper.pdf
8. AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
錛堟枃鏈敓鎴愬浘鐗囷級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf
9. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
錛堝浘鍍忛珮鍒嗚鯨鐜囷級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.pdf
1. Finding Tiny Faces in the Wild with Generative Adversarial Network
錛堝浣庡垎杈ㄧ巼鐨勪漢鑴告嫻嬶級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Bai_Finding_Tiny_Faces_CVPR_2018_paper.pdf
2. Learning Face Age Progression: A Pyramid Architecture of GANs
錛堥嫻嬪勾榫勶級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Learning_Face_Age_CVPR_2018_paper.pdf
3. Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs
錛堝浣庡垎杈ㄧ巼浜鴻劯瓚呭垎杈ㄧ巼錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Bulat_Super-FAN_Integrated_Facial_CVPR_2018_paper.pdf
4. Towards Open-Set Identity Preserving Face Synthesis
錛堜漢鑴稿悎鎴愶級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Bao_Towards_Open-Set_Identity_CVPR_2018_paper.pdf
5. Weakly Supervised Facial Action Unit Recognition through Adversarial Training
錛堜漢鑴歌〃鎯呰瘑鍒級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_Weakly_Supervised_Facial_CVPR_2018_paper.pdf
6.FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis
錛堢敓鎴愬瑙掑害浜鴻劯錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_FaceID-GAN_Learning_a_CVPR_2018_paper.pdf
7. UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition
錛堜漢鑴哥敓鎴愶級
8.Face Aging with Identity-Preserved Conditional Generative Adversarial Networks
錛堜漢鑴歌佸寲錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Face_Aging_With_CVPR_2018_paper.pdf
1. Deformable GANs for Pose-based Human Image Generation
錛堜漢鐗╁Э鎬佽縼縐伙級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Siarohin_Deformable_GANs_for_CVPR_2018_paper.pdf
2. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
(鐢℅AN鐢熸垚浜鴻涓鴻建榪硅拷韙?
http://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf
3. GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB
錛堢敤GAN鐢熸垚鐨勬墜鍔垮浘鐗囧仛鎵嬪娍榪借釜鐨勬暟鎹泦錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Mueller_GANerated_Hands_for_CVPR_2018_paper.pdf
4. Multistage Adversarial Losses for Pose-Based Human Image Synthesis
錛堜漢浣撳Э鎬佸悎鎴愶級
5. Disentangled Person Image Generation
錛堜漢浣撳悎鎴愶級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Ma_Disentangled_Person_Image_CVPR_2018_paper.pdf
錛堣繖涓病鏉ュ緱鍙婃壘浜嗭紝鍙兘杞鍜瘇 鍞夛級
1. Generate to Adapt: Aligning Domains Using Generative Adversarial Networks
2. Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation
3. Adversarial Feature Augmentation for Unsupervised Domain Adaptation
4. Domain Generalization With Adversarial Feature Learning
5. Image to Image Translation for Domain Adaptation
6. Duplex Generative Adversarial Network for Unsupervised Domain Adaptation
7. Conditional Generative Adversarial Network for Structured Domain Adaptation
1.Generative Adversarial Learning Towards Fast Weakly Supervised Detection
錛堝急鐩戠潱媯嫻嬶級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Generative_Adversarial_Learning_CVPR_2018_paper.pdf
2. SINT++: Robust Visual Tracking via Adversarial Positive Instance Generation
錛堝鎶楀涔犵敓鎴愯建榪規(guī)牱鏈級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_SINT_Robust_Visual_CVPR_2018_paper.pdf
3. VITAL: VIsual Tracking via Adversarial Learning
http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_VITAL_VIsual_Tracking_CVPR_2018_paper.pdf
1. SGAN: An Alternative Training of Generative Adversarial Network
錛堟浛浠h緇僄AN錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chavdarova_SGAN_An_Alternative_CVPR_2018_paper.pdf
2. GAGAN: Geometry-Aware Generative Adversarial Networks
錛堜竴縐嶅叧娉ㄥ嚑浣曞褰㈢殑GAN錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Kossaifi_GAGAN_Geometry-Aware_Generative_CVPR_2018_paper.pdf
3.Global versus Localized Generative Adversarial Nets
(灞閮ㄤ紭鍖朑AN)
http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Global_Versus_Localized_CVPR_2018_paper.pdf
4. Generative Adversarial Image Synthesis with Decision Tree Latent Controller
錛堝喅絳栨爲錛?/p>
5. Unsupervised Deep Generative Adversarial Hashing Network
錛堝搱甯孏AN錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Dizaji_Unsupervised_Deep_Generative_CVPR_2018_paper.pdf
6. Multi-Agent Diverse Generative Adversarial Networks
錛堝涓敓鎴愬櫒GAN錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Ghosh_Multi-Agent_Diverse_Generative_CVPR_2018_paper.pdf
7. Duplex Generative Adversarial Network for Unsupervised Domain Adaptation
錛堝弻閴村埆鍣℅AN錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Duplex_Generative_Adversarial_CVPR_2018_paper.pdf
1. Translating and Segmenting Multimodal Medical Volumes With Cycle- and Shape-Consistency Generative Adversarial Network
錛堝浘鍍忓垎鍓詫級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Translating_and_Segmenting_CVPR_2018_paper.pdf
1. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
錛堢敤GAN鐢熸垚鐨勪漢浣撴嫻嬬殑鍥劇墖錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wei_Person_Transfer_GAN_CVPR_2018_paper.pdf
2. Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
http://openaccess.thecvf.com/content_cvpr_2018/papers/Deng_Image-Image_Domain_Adaptation_CVPR_2018_paper.pdf
1. Visual Feature Attribution using Wasserstein GANs
http://openaccess.thecvf.com/content_cvpr_2018/papers/Baumgartner_Visual_Feature_Attribution_CVPR_2018_paper.pdf
1. Generate To Adapt: Aligning Domains using Generative Adversarial Networks
錛堣瑙夊煙鑷傚簲錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Generate_to_Adapt_CVPR_2018_paper.pdf
1. HashGAN: Deep Learning to Hash with Pair Conditional Wasserstein GAN
http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_HashGAN_Deep_Learning_CVPR_2018_paper.pdf
1.Partial Transfer Learning With Selective Adversarial Networks
http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partial_Transfer_Learning_CVPR_2018_paper.pdf
1. MoCoGAN: Decomposing Motion and Content for Video Generation
錛堢敤GAN鐢熸垚瑙嗛錛?/p>
http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulyakov_MoCoGAN_Decomposing_Motion_CVPR_2018_paper.pdf
2. Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks
錛堢敓鎴愬歡鏃惰棰戯級
http://openaccess.thecvf.com/content_cvpr_2018/papers/Xiong_Learning_to_Generate_CVPR_2018_paper.pdf
鍙互鐪嬪嚭GAN鐩稿叧鐨勮鏂囪繕涓嶅皯鍛錛屽悇涓柟闈㈢殑閮芥湁錛屽彲鏄垜涓漢瑙夊緱錛屽彲鑳芥病鏈夐偅縐嶇壒鍒帀瀹崇殑鍚hh
--------------------- 鏈枃鏉ヨ嚜 鐪夐棿緇嗛洩 鐨凜SDN 鍗氬 錛屽叏鏂囧湴鍧璇風偣鍑伙細https://blog.csdn.net/weixin_42445501/article/details/82792311?utm_source=copy